Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T13:24:37.886Z Has data issue: false hasContentIssue false

Scintillator materials for x-ray detectors and beam monitors

Published online by Cambridge University Press:  09 June 2017

T. Martin
Affiliation:
European Synchrotron Radiation Facility, France; tmartin@esrf.fr
A. Koch
Affiliation:
European XFEL GmbH, Germany; andreas.koch@xfel.eu
M. Nikl
Affiliation:
Institute of Physics of The Czech Academy of Sciences, Czech Republic; nikl@fzu.cz
Get access

Abstract

Indirect detection is a versatile way to detect hard x-rays. It is based on an x-ray-to-light converter, optical coupling, and a visible light detector. The converter screen, known as a scintillator, is deployed in both imaging and point detection, using either signal integration or counting. Two applications are explored in this review—sample examination and x-ray beam diagnostics for synchrotron sources. A large variety of scintillators are available to fulfill the needs of synchrotron applications. High dynamic range, small pixel size, and radiation hardness are the major advantages of scintillators. This article provides a review of the technical and scientific aspects of scintillators used in synchrotron radiation (i.e., storage rings and x-ray free-electron lasers). The advantages and drawbacks of implementation of the most popular scintillators on synchrotron beamlines are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tucoulou, R., Martinez-Criado, G., Bleuet, P., Kieffer, I., Cloetens, P., Labouré, S., Martin, T., Guilloud, C., Sussini, J., J. Synchrotron Radiat. 15, 392 (2008).CrossRefGoogle Scholar
Martin, T., Baret, G., Lesimple, F., Jobert, P.P., IEEE Trans. Nucl. Sci. 55, 1527 (2008).Google Scholar
Shionoya, S., Yen, W.M., Phosphor Handbook (CRC Press, New York, 1998).Google Scholar
Gambacini, M., Taibi, A., Del Guerra, A., Marziani, A., Tuffanelli, A., Phys. Med. Biol. 41, 2799 (1996).Google Scholar
Lecoq, P., Getkin, A., Korzhik, M., Inorganic Scintillators for Detector Systems, Physical Principles and Crystal Engineering, 2nd ed., (Springer, Switzerland, 2017).Google Scholar
Thacker, S.C., Yang, K., Packard, N., Gaysinskiy, V., Burkett, G., Miller, S., Boone, J.M., Nagarkar, V.V., Proc. SPIE 7258, 725846 (2009).Google Scholar
Gennaro, G., Malvestio, M., Zanella, G., Zannoni, R., Nucl. Instrum. Methods Phys. Res. A 382, 567 (1996).Google Scholar
Sahlholm, A., Svenonius, O., Näsgarde, C., Wiklund, P., Linnros, J., Proc. 19th ESA Symp. ESA SP-671 (2009).Google Scholar
Koch, A., Raven, C., Spanne, P., Snigirev, A., J. Opt. Soc. Am. A 15, 1940 (1998).CrossRefGoogle Scholar
Koch, A., Cloetens, P., Ludwig, W., Labiche, J.C., Ferrand, B., “Reading Thin-Film Scintillators with Optical Microscopes for X-Ray Imaging,” Proc. SCINT99 Conf. (Moscow, 1999).Google Scholar
Martin, T., Couchaud, M., Ferrand, B., Caillet, A., Pelenc, D., Chambaz, B., Passero, A., Proc. SCINT2005 Conf., Getkin, A., Grinyov, B., Eds. (ISMA, Kharkov, Ukraine, 2006), pp. 459463.Google Scholar
Jung, J.W., Lee, J.S., Kwon, N., Park, S.J., Chang, S., Kim, J., Pyo, J., Kohmura, Y., Nishino, Y., Yamamoto, M., Ishikawa, T., Je, J.H., Rev. Sci. Instrum. 83, 093704 (2012).CrossRefGoogle Scholar
Melcher, C.L., Eriksson, L.A., Aykac, M., Bauer, F., Williams, C., Loope, M., Schmand, M., in Radiation Detectors for Medical Applications, Tavernier, S., Gektin, A., Grinyov, B., Moses, W.W., Eds. (Springer, Dordrecht, The Netherlands, 2006), pp. 243257.Google Scholar
Martin, T., Douissard, P.A., Seeley, Z., Cherepy, N., Payne, S., Mathieu, E., Schulanden, J., IEEE Trans. Nucl. Sci. 59, 2269 (2012).Google Scholar
Douissard, P.A., Cecilia, A., Martin, T., Chevalier, V., Couchaud, M., Baumbach, T., Dupré, K., Kühbacher, M., Rack, A., J. Synchrotron Radiat. 17, 571 (2010).CrossRefGoogle Scholar
Soeun, C., Namseop, K., Jinkyung, K., Yoshiki, K., Tetsuya, I., Kook, R.C., Ho, J.J., Akira, T., Sci. Rep., published online March 4, 2015, http://dx.doi.org/10.1038/srep08760.Google Scholar
Cherepy, N.J., Kuntz, J.D., Roberts, J.J., Hurst, T.A., Drury, O.B., Sanner, R.D., Tillotson, T.M., Payne, S.A., Proc. SPIE 7079, 70790X (2008).Google Scholar
Kameshima, T., Sato, T., Kudo, T., Ono, S., Ozaki, K., Katayama, T., Hatsui, T., Yabashi, M., AIP Conf. Proc. 1741, 040033 (2016).Google Scholar
Bordessoule, M., J. Phys. Conf. Ser. 425, 192018 (2013).Google Scholar
Pereira, A., Martin, T., Levinta, M., Dujardin, C., J. Mater. Chem. C 3, 4954 (2015).Google Scholar
Degenhardt, M., Aprigliano, G., Schulte-Schrepping, H., Hahn, U., Grabosh, H.J., Wörner, E., J. Phys. Conf. Ser. 425, 192022 (2013).Google Scholar
Hosono, Y., Nihei, H., Nakazama, M., Jpn. J. Appl. Phys. 43 (6A), 3582 (2004).Google Scholar
Koch, A., Freund, W., Grünert, J., Planas, M., Roth, T., Samoylova, L., Lyamayev, V., Proc. SPIE 9512, Biedron, S.G., Ed. (SPIE, Prague, 2015).Google Scholar
Hau-Riege, S.P., London, R.A., Bionta, R.M., McKernan, M.A., Baker, S.L., Krzywinski, J., Sobierajski, R., Nietubyc, R., Pelka, J.B., Jurek, M., Juha, L., Chalupský, J., Cihelka, J., Hájková, V., Velyhan, A., Krása, J., Kuba, J., Tiedtke, K., Toleikis, S., Tschentscher, Th., Wabnitz, H., Bergh, M., Caleman, C., Sokolowski-Tinten, K., Stojanovic, N., Zastrau, U., Appl. Phys. Lett. 90, 173128 (2007).CrossRefGoogle Scholar
Manfredotti, C., Vittone, E., Lo Giudice, A., Paolini, C., Fizzotti, F., Dinca, G., Ralchenko, V., Nistor, S.V., Diam. Relat. Mater. 10, 568 (2001).Google Scholar
Iakoubovskii, K., Adriaenssens, G.J., Phys. Status Solidi A 172, 123 (1999).Google Scholar
Museur, L., Kanaev, A., J. Mater. Sci. 44, 2560 (2009).CrossRefGoogle Scholar
Museur, L., Kanaev, A., J. Appl. Phys. 103, 103520 (2008).Google Scholar
van Eijk, C.W.E., Phys. Med. Biol. 47, 85 (2002).CrossRefGoogle Scholar
Hofstadter, R., Phys. Rev. 75, 796 (1949).CrossRefGoogle Scholar
Weber, M.J., J. Lumin. 100, 35 (2002).Google Scholar
Nikl, M., Yoshikawa, A., Adv. Opt. Mater. 3, 463 (2015).CrossRefGoogle Scholar
Bachmann, W., Ronda, C., Meijerink, A., Chem. Mater. 21, 2077 (2009).Google Scholar
Moszynski, M., Ludziejewski, T., Wolski, D., Klamra, W., Norlin, L.O., Nucl. Instrum. Methods Phys. Res. A 345, 461 (1994).CrossRefGoogle Scholar
Nikl, M., Yoshikawa, A., Kamada, K., Nejezchleb, K., Stanek, C.R., Mares, J.A., Blazek, K., Prog. Cryst. Growth Charact. Mater. 59, 47 (2013).Google Scholar
Nikl, M., Kamada, K., Babin, V., Pejchal, J., Pilarova, K., Mihokova, E., Beitlerova, A., Bartosiewicz, K., Kurosawa, S., Yoshikawa, A., Cryst. Growth Des. 14, 4827 (2014).Google Scholar
Lucchini, M.T., Babin, V., Bohacek, P., Gundacker, S., Kamada, K., Nikl, M., Petrosyan, A., Yoshikawa, A., Auffray, E., Nucl. Instrum. Methods Phys. Res. A 816, 176 (2016).Google Scholar
Blahuta, S., Bessière, A., Viana, B., Ouspenski, V., IEEE Trans. Nucl. Sci. 60 (4), 3134 (2013).Google Scholar
Kamada, K., Shoji, Y., Kochurikhin, V.V., Okumura, S., Yamamoto, S., Nagura, A., Yeom, J.Y., Kurosawa, S., Yokota, Y., Ohashi, Y., Nikl, M., Yoshikawa, A., J. Cryst. Growth 452, 81 (2016).CrossRefGoogle Scholar
Prusa, P., Kucera, M., Mares, J.A., Onderisinova, Z., Hanus, M., Babin, V., Beitlerova, A., Nikl, M., Cryst. Growth Des. 15, 3715 (2015).CrossRefGoogle Scholar
Zorenko, Y., Gorbenko, V., Zorenko, T., Sidletskiy, O., Fedorov, A., Bilski, P., Twardak, A., Phys. Status Solidi Rapid Res. Lett. 9, 489 (2015).Google Scholar
Průša, P., Kučera, M., Babin, V., Brůža, P., Pánek, D., Beitlerová, A., Mareš, J.A., Hanuš, M., Lučeničová, Z., Nikl, M., Adv. Opt. Mater. 5, 1600875 (2017).Google Scholar
Weber, M.J., J. Appl. Phys. 44, 3205 (1973).Google Scholar
Gumanskaya, E.G., Korzhik, M.V., Smirnova, S.A., Pavlenko, V.B., Fedorov, A.A., Opt. Spektrosk. 72, 155 (1992).Google Scholar
Takeda, T., Miyata, T., Muramatsu, F., Tomiki, T., J. Electrochem. Soc. 127, 438 (1980).Google Scholar
Autrata, E., Schauer, P., Kvapil, J., Kvapil, J., Scanning 5, 91 (1983).Google Scholar
Nikl, M., Phys. Status Solidi A 178, 595 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
Trummer, J., Auffray, E., Lecoq, P., Petrosyan, A., Sempere-Roldan, P., Nucl. Instrum. Methods Phys. Res. A 551, 339 (2005).Google Scholar
Riva, F., Douissard, P.A., Martin, T., Carlà, F., Zorenko, Y., Dujardin, C., CrystEngComm 18, 608 (2016).Google Scholar
Kramer, K.W., Dorenbos, P., Gudel, H.U., van Eijk, C.W.E., J. Mater. Chem. 16, 2773 (2006).Google Scholar
Rutherford, M.E., Chapman, D.J., White, T.G., Drakopoulos, M., Rack, A., Eakins, D.E., J. Synchrotron Radiat. 23, 685 (2016).Google Scholar
Marton, Z., Miller, S.R., Ovechkina, E., Kenesei, P., Moore, M.D., Woods, R., Almer, J.D., Miceli, A., Singh, B., Nagarkar, V.V., AIP Conf. Proc. 1741, 040035 (2016).Google Scholar
Marton, Z., Nagarkar, V.V., Miller, S.R., Brecher, C., Bhandari, H.B., Kenesei, P., Ross, S.K., Almer, J.D., Singh, B., J. Phys. Conf. Ser. 493, 012017 (2014).Google Scholar
Riva, F., Martin, T., Douissard, P.A., Dujardin, C., J. Instrum. 11, C10010 (2016).Google Scholar
Hospodková, A., Nikl, M., Pacherová, O., Oswald, J., Brůža, P., Pánek, D., Foltynski, B., Hulicius, E., Beitlerová, A., Heuken, M., Nanotechnology 25, 455501 (2014).Google Scholar
Engels, R., Kemmerling, G., Schelten, J., IEEE Nucl. Sci. Symp. Conf. Rec. 5 (2005), p. 1318.Google Scholar
Lecoq, P., Nucl. Instrum. Methods Phys. Res. A 809, 130 (2016).Google Scholar
Globus, M., Grinyov, B., Kim, J.K., Inorganic Scintillators for Modern and Traditional Applications (Institute for Single Crystals, Kharkov, Ukraine, 2005).Google Scholar
Knoll, G.F., Radiation Detection and Measurement (Wiley, New York, 1999).Google Scholar
Rodnyi, P.A., Gorohova, E.I., Mikhrin, S.B., Mishin, A.N., Potapov, A.S., Nucl. Instrum. Methods Phys. Res. A 486, 244 (2002).Google Scholar
Supplementary material: PDF

Martin supplementary material

Table S1

Download Martin supplementary material(PDF)
PDF 69.4 KB