Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T18:21:18.019Z Has data issue: false hasContentIssue false

Soft matter and nanomaterials characterization by cryogenic transmission electron microscopy

Published online by Cambridge University Press:  10 December 2019

John Watt
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, USA; watt@lanl.gov
Dale L. Huber
Affiliation:
Center for Integrated Nanotechnologies, Sandia National Laboratories, USA; dale.huber@sandia.gov
Phoebe L. Stewart
Affiliation:
Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, USA; PLS47@case.edu
Get access

Abstract

Soft matter has historically been an unlikely candidate for investigation by electron microscopy techniques due to damage by the electron beam as well as inherent instability under a high vacuum environment. Characterization of soft matter has often relied on ensemble-scattering techniques. The recent development of cryogenic transmission electron microscopy (cryo-TEM) provides the soft matter community with an exciting opportunity to probe the structure of soft materials in real space. Cryo-TEM reduces beam damage and allows for characterization in a native, frozen-hydrated state, providing direct visual representation of soft structure. This article reviews cryo-TEM in soft materials characterization and illustrates how it has provided unique insights not possible by traditional ensemble techniques. Soft matter systems that have benefited from the use of cryo-TEM include biological-based “soft” nanoparticles (e.g., viruses and conjugates), synthetic polymers, supramolecular materials as well as the organic–inorganic interface of colloidal nanoparticles. Many challenges remain, such as combining structural and chemical analyses; however, the opportunity for soft matter research to leverage newly developed cryo-TEM techniques continues to excite.

Type
Cryogenic Electron Microscopy in Materials Science
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cheng, Y.F., Science 361, 876 (2018).CrossRefGoogle Scholar
Danev, R., Yanagisawa, H., Kikkawa, M., Trends Biochem. Sci. 44, 837 (2019).CrossRefGoogle Scholar
Kuhlbrandt, W., Science 343, 1443 (2014).CrossRefGoogle Scholar
Nogales, E., Scheres, S.H., Mol. Cell 58, 677 (2015).CrossRefGoogle Scholar
Beck, M., Baumeister, W., Trends Cell Biol . 26, 825 (2016).CrossRefGoogle Scholar
Koning, R.I., Koster, A.J., Sharp, T.H., Ann. Anat. 217, 82 (2018).CrossRefGoogle Scholar
Weber, M.S., Wojtynek, M., Medalia, O., Cells 8, 57 (2019).CrossRefGoogle ScholarPubMed
Veliz, F.A., Ma, Y.F., Molugu, S.K., Tiu, B.D.B., Stewart, P.L., French, R.H., Steinmetz, N.F., Adv. Biosyst. 1, 1700088 (2017).CrossRefGoogle Scholar
McKenzie, B.E., de Visser, J.F., Portale, G., Hermida-Merino, D., Friedrich, H., Bomans, P.H.H., Bras, W., Monaghan, O.R., Holder, S.J., Sommerdijk, N.A.J.M., Soft Matter 12, 4113 (2016).CrossRefGoogle Scholar
Hernandez, C., Gulati, S., Fioravanti, G., Stewart, P.L., Exner, A.A., Sci. Rep. 7, 13517 (2017).CrossRefGoogle Scholar
Stewart, P.L., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1417 (2017).CrossRefGoogle Scholar
Jiang, W., Tang, L., Curr. Opin. Struct. Biol. 46, 122 (2017).CrossRefGoogle Scholar
Lee, P.W., Isarov, S.A., Wallat, J.D., Molugu, S.K., Shukla, S., Sun, J.E., Zhang, J., Zheng, Y., Lucius Dougherty, M., Konkolewicz, D., Stewart, P.L., Steinmetz, N.F., Hore, M.J., Pokorski, J.K., J. Am. Chem. Soc. 139, 3312 (2017).CrossRefGoogle Scholar
Jun, H., Shepherd, T.R., Zhang, K., Bricker, W.P., Li, S., Chiu, W., Bathe, M., ACS Nano 13, 2083 (2019).Google Scholar
Gulati, N.M., Pitek, A.S., Steinmetz, N.F., Stewart, P.L., Nanoscale 9, 3408 (2017).CrossRefGoogle Scholar
Demurtas, D., Guichard, P., Martiel, I., Mezzenga, R., Hebert, C., Sagalowicz, L., Nat. Commun. 6, 8915 (2015).CrossRefGoogle Scholar
Vanzo, E., J. Polym. Sci. A Polym. Chem. 4, 1727 (1966).CrossRefGoogle Scholar
Kinning, D.J., Winey, K.I., Thomas, E.L., Macromolecules 21, 3502 (1988).CrossRefGoogle Scholar
Thomas, E.L., Anderson, D.M., Henkee, C.S., Hoffman, D., Nature 334, 598 (1988).CrossRefGoogle Scholar
Vinson, P.K., Bellare, J.R., Davis, H.T., Miller, W.G., Scriven, L.E., J. Colloid Interface Sci. 142, 74 (1991).CrossRefGoogle Scholar
Lobling, T.I., Haataja, J.S., Synatschke, C.V., Schacher, F.H., Muller, M., Hanisch, A., Groschel, A.H., Muller, A.H., ACS Nano 8, 11330 (2014).CrossRefGoogle Scholar
Sehgal, A., Seery, T.A.P., Macromolecules 32, 7807 (1999).CrossRefGoogle Scholar
Wirix, M.J., Bomans, P.H., Friedrich, H., Sommerdijk, N.A., de With, G., Nano Lett . 14, 2033 (2014).CrossRefGoogle Scholar
Magdassi, S., Grouchko, M., Toker, D., Kamyshny, A., Balberg, I., Millo, O., Langmuir 21, 10264 (2005).CrossRefGoogle Scholar
Monson, T.C., Venturini, E.L., Petkov, V., Ren, Y., Lavin, J.M., Huber, D.L., J. Magn. Magn. Mater. 331, 156 (2013).CrossRefGoogle Scholar
Bishop, K.J.M., Wilmer, C.E., Soh, S., Grzybowski, B.A., Small 5, 1600 (2009).CrossRefGoogle Scholar
Sabyrov, K., Burrows, N.D., Penn, R.L., Chem. Mater. 25, 1408 (2013).CrossRefGoogle Scholar
Kirillova, A., Schliebe, C., Stoychev, G., Jakob, A., Lang, H., Synytska, A., ACS Appl. Mater. Interfaces 7, 21218 (2015).CrossRefGoogle Scholar
Ilett, M., Brydson, R., Brown, A., Hondow, N., Micron 120, 35 (2019).CrossRefGoogle Scholar
Mousseau, F., Oikonomou, E.K., Baldim, V., Mornet, S., Berret, J.F., Colloids Interfaces 2, 50 (2018).CrossRefGoogle Scholar
Wang, F., Zhang, X., Liu, Y., Lin, Z.Y., Liu, B., Liu, J., Angew. Chem. Int. Ed. Engl. 55, 12063 (2016).CrossRefGoogle Scholar
Liu, X.R., Li, X.Q., Xu, W., Zhang, X.H., Huang, Z.C., Wang, F., Liu, J.W., Langmuir 34, 6628 (2018).CrossRefGoogle Scholar
Zivanovic, V., Kochovski, Z., Arenz, C., Lu, Y., Kneipp, J., J. Phys. Chem. Lett. 9, 6767 (2018).CrossRefGoogle Scholar
Qiao, X.G., Lambert, O., Taveau, J.C., Dugas, P.Y., Charleux, B., Lansalot, M., Bourgeat-Lami, E., Macromolecules 50, 3796 (2017).CrossRefGoogle Scholar
Burrows, N.D., Penn, R.L., Microsc. Microanal. 19, 1542 (2013).CrossRefGoogle Scholar
Miao, J., Ercius, P., Billinge, S.J.L., Science 353, aaf2157 (2016).CrossRefGoogle Scholar
Zachman, M.J., Tu, Z., Choudhury, S., Archer, L.A., Kourkoutis, L.F., Nature 560, 345 (2018).CrossRefGoogle Scholar
Simocko, C.K., Frischknecht, A.L., Huber, D.L., ACS Macro Lett. 5, 149 (2016).CrossRefGoogle Scholar