Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T04:02:29.250Z Has data issue: false hasContentIssue false

Superhard Ceramic Oxides

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Oxide-based ceramic materials are rapidly proving to have exciting potential for application as hard coatings. The most commonly known oxide material is silica, with a well-known variety of polytypes. Many other oxides, especially those involving metals, are now also proving to be important for a variety of applications where, because of the chemical role played by metal d electrons, large oxygen coordinations can be sustained. Properties of a variety of oxides—from silica to metal-based oxides—are discussed, and the role of predictive computer modeling is shown to be valuable in guiding the search for potentially new superhard oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Badzian, A., Mater. Chem. Phys. 72 (2001) p. 110.CrossRefGoogle Scholar
2.Haines, J., Leger, J.M., and Bocquillon, G., Annu. Rev. Mater. Res. 31 (2001) p. 1.CrossRefGoogle Scholar
3.Affatato, B., Goldoni, M., Testoni, M., and Toni, A., Biomaterials 22 (2001) p. 717.CrossRefGoogle Scholar
4.Teter, D.M., MRS Bull. 23 (1) (1998) p. 22.CrossRefGoogle Scholar
5.Murashov, V.V. and Svishchev, I.M., Phys. Rev. B 57 (1998) p. 5639.CrossRefGoogle Scholar
6.Wyckoff, R.W.G., Crystal Structures (John Wiley & Sons, New York, 1963).Google Scholar
7.Keskar, N.R. and Chelikowsky, J.R., Phys. Rev. B 46 (1992) p. 1.CrossRefGoogle Scholar
8.Heaney, P.J., Gibb, G.V., and Prewitt, C.T., eds., Silica-Physical Behavior: Geochemistry and Materials Applications, Vol. 29, Reviews of Mineralogy (Mineralogical Society of America, Washington, DC, 1994).CrossRefGoogle Scholar
9.Fleming, J.E. and Lynton, H., Phys. Chem. Glasses 1 (1960) p. 148.Google Scholar
10.Tsuchida, Y. and Yagi, T., Nature 340 (1989) p. 217.CrossRefGoogle Scholar
11.Liu, L.G., Bassett, W.A., and Sharry, J., J. Geophys. Res. 78 (1978) p. 2301.CrossRefGoogle Scholar
12.Dubrovinskaia, N.A. and Dubrovinsky, L.S., Mater. Chem. Phys. 68 (2001) p. 77.CrossRefGoogle Scholar
13.Ono, S., Hirose, K., Nishiyama, N., and Isshiki, M., Am. Mineral. 87 (2002) p. 99.CrossRefGoogle Scholar
14.Dmitriev, V.P., Tolédano, P., and Salje, E.K.H., Phys. Rev. B 58 (1998) p. 11911.CrossRefGoogle Scholar
15.Tse, J.S., Klug, D.D., and Bernasconi, M., Phys. Rev. B 56 (1997) p. 10878.CrossRefGoogle Scholar
16.Wentzcovitch, R.M., Da Silva, C., and Chelikowsky, J.R., Phys. Rev. Lett. 80 (1998) p. 2149.CrossRefGoogle Scholar
17.Tjabane, M. and Lowther, J.E., Physica B 270 (1999) p. 164.CrossRefGoogle Scholar
18.Hemley, R.J., Prewitt, C.T., and Klima, K.J., Physical Behavior, Geochemistry and Material Applications (Mineralogical Society of America, Washington, DC, 1994).Google Scholar
19.Hemley, R.J., Jepheoat, A.P., Mao, H.K., Ming, L.C., and Manghnani, M.H., Nature 334 (1988) p. 52.CrossRefGoogle Scholar
20.Binggeli, N. and Chelikowsy, J.R., Phys. Rev. Lett. 69 (1992) p. 2220CrossRefGoogle Scholar
21.Teter, D.M., Hemley, R.J., Kresse, G., and Hafner, J., Phys. Rev. Lett. 80 (1998) p. 2145.CrossRefGoogle Scholar
22.Liddell, K. and Thompson, D.P., “The Future of Multicomponent SiAlON Ceramics,” presented at the International Symposium on Sialons, Chuba, Japan, 2001.Google Scholar
23.Haines, J., Leger, J.M., and Blanzat, B., J. Mater. Sci. Lett. 44 (1994) p. 1688.Google Scholar
24.Dewhurst, J.K. and Lowther, J.E., Phys. Rev. B 54 (1997) p. R1234.Google Scholar
25.Arlt, T., Bermejo, M., Blanco, M.A., Gerward, L., Jiang, J.Z., Staun Olsen, J., and Recio, J.M., Phys. Rev. B 61 (2000) p. 14414.CrossRefGoogle Scholar
26.Olsen, J.T., Gerward, L., and Jiang, J., High Pressure Res. 22 (2002) p. 385.CrossRefGoogle Scholar
27.Dewhurst, J.K. and Lowther, J.E., Phys. Rev. B 64 14104 (2001).CrossRefGoogle Scholar
28.Dubrovinsky, L.S., Dubrovinskaia, N.A., Swamy, V., Muscat, J., Harrison, N.M., Ahuja, R., Holm, B., and Johansson, B., Nature 410 (2001) p. 653.CrossRefGoogle Scholar
29.Haines, J. and Leger, J.M., Physica B 192 (1993) p. 233.CrossRefGoogle Scholar
30.Sato, H., Endo, S., Sugiyama, M., Kikegawa, T., Shimomura, O., and Kusaba, K., Science 251 (1991) p. 786.CrossRefGoogle Scholar
31.Wang, Z., Saxena, S.K., Pischedda, V., Liermann, H.P., and Zha, C.S., J. Phys.: Condens. Matter 13 (2001) p. 8317.Google Scholar
32.Haines, J., Leger, J.M., and Schulte, O., J. Phys.: Condens. Matter 8 (1996) p. 1631.Google Scholar
33.Lagarec, K. and Desgreniers, S., Solid State Commun. 94 (1995) p. 519.CrossRefGoogle Scholar
34.Glassford, K.M. and Chelikowsky, J.R., Phys. Rev. B 46 (1992) p. 1284.CrossRefGoogle Scholar
35.Calatayud, M., Mori-Sánchez, P., Beltrán, A., Pendás, A.M., Francisco, E., Andrés, J., and Recio, J.M., Phys. Rev. B 64 184113 (2001).CrossRefGoogle Scholar
36.Haines, J. and Leger, J.M., Phys. Rev. B 48 (1993) p. 13344.CrossRefGoogle Scholar
37.Lundin, U., Fast, L., Nordström, L., and Johansson, B.R., Phys. Rev. B 57 (9) (1998) p. 4979.CrossRefGoogle Scholar
38.Dewhurst, J.K. and Lowther, J.E. (unpublished).Google Scholar
39.Tse, J.S., Klug, D.D., Uehara, K., Li, Z.Q., Haines, J., and Leger, J.M., Phys. Rev. B 61 (2000) p. 10029.CrossRefGoogle Scholar
40.Haines, J., Leger, J.M., and Schulte, O., Science 271 (1996) p. 629.CrossRefGoogle Scholar
41.Haines, J.M., Leger, J.M., Hull, S., Pereira, A.S., Perottoni, C.A., and da Jornada, J.A.H., J. Am. Ceram. Soc. 80 (1997) p. 1910.CrossRefGoogle Scholar
42.Beatham, N. and Orchard, A.F., J. Electron Spectrosc. Relat. Phenom. 16 (1979) p. 77.CrossRefGoogle Scholar
43.Ming, L.C. and M Manghnani, H., in Proc. 2nd U.S.–Japan Seminar on High-Pressure Research: Applications in Geophysics, edited by Akimoto, S. and Manghnani, M.H. (Center Academic Publications, Tokyo, 1982) p. 329.CrossRefGoogle Scholar
44.Haines, J., Leger, J.M., Schmidt, M.W., Petitet, J.P., Pereira, A.S., da Jornada, J.A.H., and Hull, S., J. Phys. Chem. Solids 59 (1998) p. 239.CrossRefGoogle Scholar
45.Leger, J.M., Djemia, P., Ganot, F., Haines, J., Pereira, A.S., and da Jornada, J.A.H., Appl. Phys. Lett. 79 (14) (2001) p. 2169.CrossRefGoogle Scholar
46.McCullough, J.D. and Trueblood, K.N., Acta Crystallogr. 12 (1959) p. 507.CrossRefGoogle Scholar
47.Aldebert, P. and Traverse, J.P., J. Am. Ceram. Soc. 68 (1985) p. 34.CrossRefGoogle Scholar
48.Smith, D.K. and Cline, C.F., J. Am. Ceram. Soc. 45 (1962) p. 249.CrossRefGoogle Scholar
49.Starbova, B., Mankov, V., Starbov, N., Popov, D., Nihtianova, D., Kolev, K., and Laude, L.D., Appl. Surf. Sci. 173 (2001) p. 177.CrossRefGoogle Scholar
50.Aarik, B., Aidla, A., Mandar, H., Uustare, T., Kukli, K., and Schuisky, M., Appl. Surf. Sci. 173 (2001) p. 15.CrossRefGoogle Scholar
51.Dewhurst, J.K. and Lowther, J.E., Phys. Rev. B 57 (1998) p. 741.CrossRefGoogle Scholar
52.Desgreniers, S. and Lagarec, K., Phys. Rev. B 59 (1999) p. 8467.CrossRefGoogle Scholar
53.Lowther, J.E., Dewhurst, J.K., Leger, J.M., and Haines, J., Phys. Rev. B 60 (1999) p. 14485.CrossRefGoogle Scholar
54.Ohtaka, O., Fukui, H., Kunisada, T., Fujisawa, T., Funakoshi, K., Utsumi, W., Irifune, T., Kuroda, K., and Kikegawa, T., Phys. Rev. B 63 174108 (2001).CrossRefGoogle Scholar
55.Ingel, R.P. and Lewis, D., J. Am. Ceram. Soc. 71 (1988) p. 265.CrossRefGoogle Scholar
56.Ohtaka, O., Fukui, H., Kunisada, T., Fujisawa, T., Funakoshi, K., Irifune, T., Kuroda, K., and Kikegawa, T., J. Am. Ceram. Soc. 84 (2001) p. 1369.CrossRefGoogle Scholar
57.Cohen, R.E., Mehl, M.J., and Boyer, L.L., Physica B 150 (1988) p. 1.CrossRefGoogle Scholar
58.Kisi, E.H., Howard, C.J., and Hill, R.J., J. Am. Ceram. Soc. 72 (1989) p. 1757.CrossRefGoogle Scholar
59.Ohtaka, O., Yamanaka, T., Kume, S., Hara, N., Asano, H., and Izumi, F., in Proc. Japan Acad. 66 Ser. B (1990) p. 193.CrossRefGoogle Scholar
60.Leger, J.M. and Blanzat, R., J. Mater. Sci. 44 (1993) p. 1688.Google Scholar
61.Guinebretiere, R., Oudjedi, Z., and Dauger, A., Scripta. Metall. Mater. 34 (1996) p. 1039.CrossRefGoogle Scholar
62.Kudoh, Y., Takeda, H., and Arashi, H., Phys. Chem. Miner. 13 (1986) p. 233.CrossRefGoogle Scholar
63.Heuer, A.H., Lanteri, V., Farmer, S.C., Chaim, R., Lee, R.R., Kibbel, B.W., and Dickerson, R.M., J. Mater. Sci. 24 (1989) p. 124.CrossRefGoogle Scholar
64.Howard, C.J., Kisi, E.H., and Ohtaka, O., J. Am. Ceram. Soc. 74 (1991) p. 2321.CrossRefGoogle Scholar
65.Liu, L.G., Earth Planet. Sci. Lett. 44 (1979) p. 390.CrossRefGoogle Scholar
66.Block, S., da Jornada, J.A.H., and Piermarini, G.J., J. Am. Ceram. Soc. 78 (1995) p. 497.Google Scholar
67.Liu, L.-G., J. Phys. Chem. Solids 41 (1980) p. 331.CrossRefGoogle Scholar
68.Haines, J., Leger, J.M., and Atouf, A., J. Am. Ceram. Soc. 78 (1995) p. 445.CrossRefGoogle Scholar
69.Ming, L.C. and Manghnani, M.H., in Solid State Physics under Pressure, edited by Minomura, S. (KTK Science, Tokyo, 1985) p. 135.Google Scholar
70.Arashi, H., Yagi, T., Akimoto, S., and Kudoh, Y., Phys. Rev. B 41 (1990) p. 4309.CrossRefGoogle Scholar
71.Ohtaka, O., Kume, S., and Ito, E., J. Am. Ceram. Soc. 71 (1988) p. C448.Google Scholar
72.Dev, S.R.U., Ming, L.C., and Manghnani, M.H., J. Am. Ceram. Soc. 70 (1987) p. C218.Google Scholar
73.Stefanovich, E.V., Shluger, A.L., and Catlow, C.R.A., Phys. Rev. B 49 (1994) p. 11560.CrossRefGoogle Scholar
74.Stapper, G., Bernasconi, M., Nicoloso, N., and Parrinello, M., Phys. Rev. B 59 (1999) p. 797.CrossRefGoogle Scholar
75.Bogicevic, A., Wolverton, C., Crosbie, G.M., and Stechel, E.B., Phys. Rev. B 64 104106 (2001).CrossRefGoogle Scholar