Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T03:13:50.942Z Has data issue: false hasContentIssue false

Three-dimensional bioprinting of volumetric tissues and organs

Published online by Cambridge University Press:  10 August 2017

David Kilian
Affiliation:
Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany; david.kilian@tu-dresden.de
Tilman Ahlfeld
Affiliation:
Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany; tilman.ahlfeld@tu-dresden.de
Ashwini Rahul Akkineni
Affiliation:
Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany; Ashwini_Rahul.Akkineni@tu-dresden.de
Anja Lode
Affiliation:
Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany; anja.lode@tu-dresden.de
Michael Gelinsky
Affiliation:
Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany; michael.gelinsky@tu-dresden.de
Get access

Abstract

Three-dimensional (3D) bioprinting has become a fast-developing research field in the last few years. Many different technical solutions are available, with extrusion-based printing being the most promising and versatile method. In addition, a variety of biomaterials are already available for 3D printing of live cells. The real challenge, however, remains bioprinting of macroscopic, volumetric constructs of well-defined structures since hydrogels used for cell-embedding must consist of rather soft materials. This article describes recent developments to overcome these limitations that prevent clinical applications of bioprinted human tissues. New approaches include technical solutions such as in situ cross-linking or gelation processes that now can be performed during the bioprinting process, modified bioinks that combine suitable viscosity and cytocompatible gelation mechanisms, and utilization of additional materials to provide mechanical strength to the cell-laden constructs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Malda, J., Visser, J., Melchels, F.P., Jungst, T., Hennink, W.E., Dhert, W.J.A., Groll, J., Hutmacher, D.W., Adv. Mater. 25, 5011 (2013).Google Scholar
Groll, J., Boland, T., Blunk, T., Burdick, J.A., Cho, D.-W., Dalton, P.D., Derby, B., Forgacs, G., Li, Q., Mironov, V.A., Moroni, L., Nakamura, M., Shu, W., Takeuchi, S., Vozzi, G., Woodfield, T.B.F., Xu, T., Yoo, J.J., Malda, J., Biofabrication 8, 13001 (2016).CrossRefGoogle ScholarPubMed
Norotte, C., Marga, F.S., Niklason, L.E., Forgacs, G., Biomaterials 30, 5910 (2009).CrossRefGoogle Scholar
Tabriz, A.G., Hermida, M.A., Leslie, N.R., Shu, W., Biofabrication 7, 45012 (2015).CrossRefGoogle Scholar
Markstedt, K., Mantas, A., Tournier, I., Martinez Avila, H., Hagg, D., Gatenholm, P., Biomacromolecules 16, 1489 (2015).Google Scholar
Lee, J.-S., Hong, J.M., Jung, J.W., Shim, J.-H., Oh, J.-H., Cho, D.-W., Biofabrication 6, 24103 (2014).Google Scholar
Mistry, P., Aied, A., Alexander, M., Shakesheff, K., Bennett, A., Yang, J., Bioprinting Using Mechanically Robust Core-Shell Cell-Laden Hydrogel Strands (Wiley, 2017), doi:10.1002/mabi.201600472.CrossRefGoogle ScholarPubMed
Rutz, A.L., Lewis, P.L., Shah, R.N., MRS Bull. 42 (8), 563 (2017).Google Scholar
Huang, Y.Y.S., Zhang, D., Liu, Y., MRS Bull. 42 (8), 593 (2017).Google Scholar
Pati, F., Gantelius, J., Svahn, H.A., Angew. Chem. Int. Ed. Engl. 55, 4650 (2016).Google Scholar
Lode, A., Krujatz, F., Brüggemeier, S., Quade, M., Schütz, K., Knaack, S., Weber, J., Bley, T., Gelinsky, M., Eng. Life Sci. 15, 177 (2015).Google Scholar
Duarte Campos, D.F., Blaeser, A., Weber, M., Jäkel, J., Neuss, S., Jahnen-Dechent, W., Fischer, H., Biofabrication 5, 15003 (2013).Google Scholar
Hinton, T.J., Jallerat, Q., Palchesko, R.N., Park, J.H., Grodzicki, M.S., Shue, H.J., Ramadan, M.H., Hudson, A.R., Feinberg, A.W., Sci. Adv. 1, e1500758 (2015).Google Scholar
Zhang, T., Yan, K.C., Ouyang, L., Sun, W., Biofabrication 5, 45010 (2013).CrossRefGoogle Scholar
Wüst, S., Godla, M.E., Müller, R., Hofmann, S., Acta Biomater. 10, 630 (2014).Google Scholar
Ahn, S., Lee, H., Lee, E.J., Kim, G., J. Mater. Chem. B 2, 2773 (2014).CrossRefGoogle Scholar
Jin, Y., Compaan, A., Bhattacharjee, T., Huang, Y., Biofabrication 8, 25016 (2016).Google Scholar
Ahn, S., Lee, H., Bonassar, L.J., Kim, G., Biomacromolecules 13, 2997 (2012).Google Scholar
Pereira, R.F., Bártolo, P.J., J. Appl. Polym. Sci. 132, 42458 (2015).CrossRefGoogle Scholar
Fedorovich, N.E., Oudshoorn, M.H., van Geemen, D., Hennink, W.E., Alblas, J., Dhert, W.J.A., Biomaterials 30, 344 (2009).Google Scholar
Fedorovich, N.E., Swennen, I., Girones, J., Moroni, L., van Blitterswijk, C.A., Schacht, E., Alblas, J., Dhert, W.J.A., Biomacromolecules 10, 1689 (2009).Google Scholar
Cui, X., Breitenkamp, K., Finn, M.G., Lotz, M., D’Lima, D.D., Tissue Eng. Part A 18, 1304 (2012).Google Scholar
Wang, Z., Jin, X., Dai, R., Holzman, J.F., Kim, K., RSC Adv. 6, 21099 (2016).CrossRefGoogle Scholar
Ouyang, L., Highley, C.B., Sun, W., Burdick, J.A., Adv. Mater. 29, 1604983 (2017).Google Scholar
Jungst, T., Smolan, W., Schacht, K., Scheibel, T., Groll, J., Chem. Rev. 116, 1496 (2016).Google Scholar
Schütz, K., Placht, A.-M., Paul, B., Brüggemeier, S., Gelinsky, M., Lode, A., J. Tissue Eng. Regen. Med. 11 (5), 1574 (2017), https://www.doi.org/10.1002/term.2058.Google Scholar
Armstrong, J.P.K., Burke, M., Carter, B.M., Davis, S.A., Perriman, A.W., Adv. Healthc. Mater. 5, 1724 (2016).Google Scholar
Schuurman, W., Levett, P.A., Pot, M.W., van Weeren, P.R., Dhert, W.J.A., Hutmacher, D.W., Melchels, F.P.W., Klein, T.J., Malda, J., Macromol. Biosci. 13, 551 (2013).Google Scholar
Billiet, T., Gevaert, E., de Schryver, T., Cornelissen, M., Dubruel, P., Biomaterials 35, 49 (2014).Google Scholar
Rutz, A.L., Hyland, K.E., Jakus, A.E., Burghardt, W.R., Shah, R.N., Adv. Mater. 27, 1607 (2015).Google Scholar
Kesti, M., Eberhardt, C., Pagliccia, G., Kenkel, D., Grande, D., Boss, A., Zenobi-Wong, M., Adv. Funct. Mater. 25, 7406 (2015).Google Scholar
Schuurman, W., Khristov, V., Pot, M.W., van Weeren, P.R., Dhert, W.J.A., Malda, J., Biofabrication 3, 21001 (2011).Google Scholar
Pati, F., Jang, J., Ha, D.-H., Won Kim, S., Rhie, J.-W., Shim, J.-H., Kim, D.-H., Cho, D.-W., Nat. Commun. 5, 3935 (2014).Google Scholar
Kang, H.-W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A., Nat. Biotechnol. 34, 312 (2016).Google Scholar
Kolesky, D.B., Homan, K.A., Skylar-Scott, M.A., Lewis, J.A., Proc. Natl. Acad. Sci. U.S.A. 113, 3179 (2016).Google Scholar
Kim, Y.B., Lee, H., Yang, G.-H., Choi, C.H., Lee, D., Hwang, H., Jung, W.-K., Yoon, H., Kim, G.H., J. Colloid Interface Sci. 461, 359 (2016).Google Scholar
Lee, H., Ahn, S., Bonassar, L.J., Kim, G., Macromol. Rapid Commun. 34, 142 (2013).Google Scholar
Melchels, F.P.W., Blokzijl, M.M., Levato, R., Peiffer, Q.C., de Ruijter, M., Hennink, W.E., Vermonden, T., Malda, J., Biofabrication 8, 35004 (2016).Google Scholar
Lode, A., Meissner, K., Luo, Y., Sonntag, F., Glorius, S., Nies, B., Vater, C., Despang, F., Hanke, T., Gelinsky, M., J. Tissue Eng. Regen. Med. 8, 682 (2014).Google Scholar
Lode, A., Gelinsky, M., Proc. 14th Rapid. Tech Conf., Eichmann, M., Kynast, M., Witt, G., Eds. (Hanser, 2017), http://www.hanser-elibrary.com/doi/pdf/10.3139/9783446454606.020.Google Scholar
Perez, R.A., Kim, H.-W., Acta Biomater. 21, 2 (2015).CrossRefGoogle Scholar
Akkineni, A.R., Ahlfeld, T., Lode, A., Gelinsky, M., Biofabrication 8, 45001 (2016).Google Scholar
Onoe, H., Okitsu, T., Itou, A., Kato-Negishi, M., Gojo, R., Kiriya, D., Sato, K., Miura, S., Iwanaga, S., Kuribayashi-Shigetomi, K., Matsunaga, Y.T., Shimoyama, Y., Takeuchi, S., Nat. Mater. 12, 584 (2013).Google Scholar
Yeo, M., Lee, J.-S., Chun, W., Kim, G.H., Biomacromolecules 17, 1365 (2016).Google Scholar
Ahn, S., Lee, H., Kim, G., Carbohydr. Polym. 98, 936 (2013).Google Scholar
Raja, N., Yun, H.-S., J. Mater. Chem. B 4, 4707 (2016).Google Scholar
Costantini, M., Idaszek, J., Szöke, K., Jaroszewicz, J., Dentini, M., Barbetta, A., Brinchmann, J.E., Swieszkowski, W., Biofabrication 8, 35002 (2016).Google Scholar
Jia, W., Gungor-Ozkerim, P.S., Zhang, Y.S., Yue, K., Zhu, K., Liu, W., Pi, Q., Byambaa, B., Dokmeci, M.R., Shin, S.R., Khademhosseini, A., Biomaterials 106, 58 (2016).Google Scholar