Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T14:39:53.242Z Has data issue: false hasContentIssue false

Ultrahigh-Temperature Nb-Silicide-Based Composites

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article reviews the most recent progress in the development of Nb-silicide-based in situ composites for potential applications in turbine engines with service temperatures of up to 1350°C. These composites contain high-strength Nb silicides that are toughened by a ductile Nb solid solution. Preliminary composites were derived from binary Nb-Si alloys, while more recent systems are complex and are alloyed with Ti, Hf, W, B, Ge, Cr, and Al. Alloying schemes have been developed to achieve an excellent balance of room-temperature toughness, fatigue-crack-growth behavior, high-temperature creep performance, and oxidation resistance over a broad range of temperatures. Nb-silicide-based composites are described with emphasis on processing, microstructure, and performance. Nb silicide composites have been produced using a range of processing routes, including induction skull melting, investment casting, hot extrusion, and powder metallurgy methods. Nb silicide composite properties are also compared with those of Ni-based superalloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bewlay, B.P., Jackson, M.R., and Gigliotti, M.F.X., in Intermetallic Compounds—Principles and Practice, Vol. 3, edited by Fleischer, R.L. and Westbrook, J.H. (John Wiley & Sons, 2001) p. 541.Google Scholar
2.Subramanian, P.R., Mendiratta, M.G., Dimiduk, D.M., and Stucke, M.A., Mater. Sci. Eng., A A239–240 (1997) p. 1.CrossRefGoogle Scholar
3.Bewlay, B.P., Jackson, M.R., and Subramanian, P.R., JOM 51 (1999) p. 32.CrossRefGoogle Scholar
4.Bewlay, B.P., Lewandowski, J.J., and Jackson, M.R., JOM 49 (1997) p. 46.CrossRefGoogle Scholar
5.Bewlay, B.P., Jackson, M.R., Zhao, J.-C., and Subramanian, P.R., Metall. Mater. Trans. 34A (October 2003) in press.Google Scholar
6.Berczik, D.M., United Technologies Corp., U.S. Patent No. 5,693,156 (December 2, 1997); U.S. Patent No. 5,595,616 (January 21, 1997).Google Scholar
7.Bewlay, B.P., Jackson, M.R., and Lipsitt, H.A., Metall. Trans. A 27A (1996) p. 3801.CrossRefGoogle Scholar
8.Schneibel, J.H., Kramer, M.J., Unal, O., and Wright, R.N., Intermetallics 9 (2001) p. 25.CrossRefGoogle Scholar
9.Balsone, S.J., Bewlay, B.P., Jackson, M.R., Subramanian, P.R., Zhao, J.-C., Chatterjee, A., and Heffernan, T.M., in Proc. of the 2001 International Symposium on Structural Intermetallics, edited by Hemker, K.J., Dimiduk, D.M., Clemens, H., Darolia, R., Inui, H., Larsen, J.M., Sikka, V.K., Thomas, M., and Whittenberger, J.D. (The Minerals, Metals and Materials Society, Warrendale, PA, 2001) p. 99.Google Scholar
10.Mendiratta, M.G., Lewandowski, J.J., and Dimiduk, D.M., Metall. Trans. A 22A (1991) p. 1573.CrossRefGoogle Scholar
11.Mendiratta, M.G. and Dimiduk, D.M., Metall. Trans. A 24A (1993) p. 501.CrossRefGoogle Scholar
12.Subramanian, P.R., Mendiratta, M.G., and Dimiduk, D.M., J. Met. 48 (1) (1996) p. 33.Google Scholar
13.Rigney, J.D. and Lewandowski, J.J., Metall. Trans. A 27A (1996) p. 3292.CrossRefGoogle Scholar
14.Jackson, M.R., Bewlay, B.P., and Zhao, J.-C., General Electric Co., U.S. Patent No. 6,419,765 (July 16, 2002).Google Scholar
15.Jackson, M.R., Rowe, R.G., and Skelly, D.W., in High-Temperature Ordered Intermetallic Alloys VI, Part 2, edited by Horton, J.A., Baker, I., Hanada, S., Noebe, R.D., and Schwartz, D.S. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, 1995) p. 1339.Google Scholar
16.Lewandowski, J.J., Padhi, D., and Solv'yev, S., in Structural Intermetallics 2001, edited by Hemker, K., Dimiduk, D.M., Clemens, H., Darolia, R., Inui, H., Larsen, J.M., Sikka, V.K., Thomas, M., and Whittenberger, J.D. (The Minerals, Metals and Materials Society, Warrendale, PA, 2001) p. 371.Google Scholar
17.Choe, H., Chen, D., Schneibel, J.H., and Ritchie, R.O., Intermetallics 9 (2001) p. 319.CrossRefGoogle Scholar
18.Zinsser, W.A. and Lewandowski, J.J., Metall. Trans. A 29A (1998) p. 1749.CrossRefGoogle Scholar
19.Zinsser, W.A., Solv'yev, S., and Lewandowski, J.J., in High-Temperature Ordered Intermetallic Alloys VIII, edited by George, E.P., Mills, M.J., and Yamaguchi, M. (Mater. Res. Soc. Symp. Proc. 552, Warrendale, PA, 1999) p. KK6.10.1.Google Scholar
20.Samant, A. and Lewandowski, J.J., Metall. Trans. A 28A (1997) p. 389.CrossRefGoogle Scholar
21.Samant, A. and Lewandowski, J.J., Metall. Trans. A 28A (1997) p. 2297.CrossRefGoogle Scholar
22.Padhi, D. and Lewandowski, J.J., Metall. Mater. Trans. A 34A (4) (2003) p. 967.CrossRefGoogle Scholar
23.Mendiratta, M.G., Goetz, R., Dimiduk, D.M., and Lewandowski, J.J., Metall. Trans. A 26A (1995) p. 1767.CrossRefGoogle Scholar
24.Erickson, G.L., JOM 47 (1995) p. 36.CrossRefGoogle Scholar
25.Ma, C.L., Tan, Y., Tanaka, H., Kasama, A., Tanaka, R., Mishima, Y., and Hanada, S., in High-Temperature Ordered Intermetallic Alloys IX, edited by Schneibel, J.S., Hemker, K.J., Noebe, R.D., Hanada, S., and Sauthoff, G. (Mater Res. Soc. Symp. Proc. 646, Warrendale, PA, 2001) p. N5.39.1.Google Scholar
26.Subramanian, P.R., Parthasarathy, T.A., Mendiratta, M.G., and Dimiduk, D.M., Scripta Metall. 32 (8) (1995) p. 1227.CrossRefGoogle Scholar