Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T02:39:17.176Z Has data issue: false hasContentIssue false

Z-scheme photocatalyst systems for water splitting under visible light irradiation

Published online by Cambridge University Press:  17 January 2011

Akihiko Kudo*
Affiliation:
Tokyo University of Science, Japan; a-kudo@rs.kagu.tus.ac.jp
Get access

Abstract

Water splitting to produce H2 using sunlight is a form of artificial photosynthesis in that light energy is converted to chemical energy. As such, water splitting using powdered photocatalysts has attracted attention in the framework of energy and environmental issues. This article reviews z-scheme photocatalyst systems for water splitting under visible light irradiation, especially focused on the systems consisting of SrTiO3:Rh of a H2-evolving photocatalyst, and O2-evolving photocatalysts with and without electron mediators. These photocatalyst systems showed activities for water splitting into H2 and O2 in a stoichiometric amount under visible light irradiation and even under sunlight irradiation. The photocatalytic activity was sensitive to pH. The optimum pH was 2.4 when iron ions were used as electron mediators. Co-catalysts also affected the activity. The photodeposited Ru co-catalyst gave an excellent performance. The best performance achieved by the pH adjustment and the selection of a co-catalyst was obtained mainly by suppression of back reactions to form H2O from evolved H2 and O2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fujishima, A., Honda, K., Nature 238, 37 (1972).CrossRefGoogle Scholar
2.Khaselev, O., Turner, J.A., Science 280, 425 (1998).CrossRefGoogle Scholar
3.Grätzel, M., Nature 414, 338 (2001).CrossRefGoogle Scholar
4.Licht, S., J. Phys. Chem. B 105, 6281 (2001).CrossRefGoogle Scholar
5.Kudo, A., Int. J. Hydrogen Energy 32, 2673 (2007).CrossRefGoogle Scholar
6.Domen, K., Hara, M., Kondo, J.N., Takata, T., Bull. Chem. Soc. Jpn. 73, 1307 (2000).CrossRefGoogle Scholar
7.Arakawa, H., Sayama, K., Catal. Surveys Jpn. 4, 75 (2000).CrossRefGoogle Scholar
8.Maeda, K., Domen, K., J. Phys. Chem. C 111, 7851 (2007).CrossRefGoogle Scholar
9.Osterloh, F.E., Chem. Mater. 20, 35 (2008).CrossRefGoogle Scholar
10.Kudo, A., Miseki, Y., Chem. Soc. Rev. 38, 253 (2009).CrossRefGoogle Scholar
11.Inoue, Y., Energy Environ. Sci. 2, 364 (2009).CrossRefGoogle Scholar
12.Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y., Domen, K., Nature 440, 295 (2006).CrossRefGoogle Scholar
13.Lee, Y., Terashita, H., Shimodaira, Y., Teramura, K., Hara, M., Kobayashi, H., Domen, K., Yashima, M., J. Phys. Chem. C 111, 1042 (2007).CrossRefGoogle Scholar
14.Darwent, J.R., Mills, A., J. Chem. Soc., Faraday Trans. 2 78, 359 (1982).CrossRefGoogle Scholar
15.Kudo, A., Omori, K., Kato, H., J. Am. Chem. Soc. 121, 11459 (1999).CrossRefGoogle Scholar
16.Kato, H., Kudo, A., J. Phys. Chem. B 106, 5029 (2002).CrossRefGoogle Scholar
17.Kato, H., Kobayashi, H., Kudo, A., J. Phys. Chem. B 106, 12441 (2002).CrossRefGoogle Scholar
18.Ishii, T., Kato, H., Kudo, A., J. Photochem. Photobiol. A 163, 181 (2004).CrossRefGoogle Scholar
19.Konta, R., Ishii, T., Kato, H., Kudo, A., J. Phys. Chem. B 108, 8992 (2004).CrossRefGoogle Scholar
20.Hosogi, Y., Tanabe, K., Kato, H., Kobayashi, H., Kudo, A., Chem. Lett. 33, 28 (2004).CrossRefGoogle Scholar
21.Shimodaira, Y., Kato, H., Kobayashi, H., Kudo, A., Bull. Chem. Soc. Jpn. 80, 885 (2007).CrossRefGoogle Scholar
22.Niishiro, R., Konta, R., Kato, H., Chun, W.J., Asakura, K., Kudo, A., J. Phys. Chem. C 111, 17420 (2007).CrossRefGoogle Scholar
23.Ishikawa, A., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K., J. Am. Chem. Soc. 124, 13547 (2002).CrossRefGoogle Scholar
24.Yamashita, D., Takata, T., Hara, M., Kondo, J.N., Domen, K., Solid State Ionics. 172, 591 (2004).CrossRefGoogle Scholar
25.Sayama, K., Mukasa, K., Abe, R., Abe, Y., Arakawa, H., Chem. Commun. 2416 (2001).CrossRefGoogle Scholar
26.Kato, H., Hori, M., Konta, R., Shimodaira, Y., Kudo, A., Chem. Lett. 33, 1348 (2004).CrossRefGoogle Scholar
27.Abe, R., Takata, T., Sugihara, H., Domen, K., Chem. Commun. 3829 (2005).CrossRefGoogle Scholar
28.Kato, H., Sasaki, Y., Iwase, A., Kudo, A., Bull. Chem. Soc. Jpn. 12, 2457 (2007).CrossRefGoogle Scholar
29.Higashi, M., Abe, R., Ishikawa, A., Takata, T., Ohtani, B., Domen, K., Chem. Lett. 37, 138 (2008).CrossRefGoogle Scholar
30.Higashi, M., Abe, R., Teramura, K., Takata, T., Ohtani, B., Domen, K., Chem. Phys. Lett. 452, 120 (2008).CrossRefGoogle Scholar
31.Sasaki, Y., Iwase, A., Kato, H., Kudo, A., J. Catal. 259, 133 (2008).CrossRefGoogle Scholar
32.Abe, R., Shinmei, K., Hara, K., Ohtani, B., Chem. Commun. 3577 (2009).Google Scholar
33.Maeda, K., Higashi, M., Lu, D., Abe, R., Domen, K., J. Am. Chem. Soc. 132, 5858 (2010).CrossRefGoogle Scholar
34.Ogura, S., Kohno, M., Saito, K., Inoue, Y., Phys. Chem. Chem. Phys. 1, 179 (1999).CrossRefGoogle Scholar
35.Lee, Y., Terashima, H., Shimodaira, Y., Teramura, K., Hara, M., Kobayashi, H., Domen, K., Yashima, M., J. Phys. Chem. C 111, 1042 (2007).CrossRefGoogle Scholar
36.Sakata, T., Hashimoto, K., Kawai, T., J. Phys. Chem. 88, 5214 (1984).CrossRefGoogle Scholar
37.Sasaki, Y., Nemoto, H., Saito, K., Kudo, A., J. Phys. Chem. C 113, 17536 (2009).CrossRefGoogle Scholar