Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T02:26:33.708Z Has data issue: false hasContentIssue false

Additive manufacturing of Ni-based superalloys: The outstanding issues

Published online by Cambridge University Press:  10 October 2016

Moataz M. Attallah
Affiliation:
Advanced Materials and Processing Lab, School of Metallurgy and Materials, University of Birmingham, UK; m.m.attallah@bham.ac.uk
Rachel Jennings
Affiliation:
Advanced Materials and Processing Lab, School of Metallurgy and Materials, University of Birmingham, UK; REJ024@student.bham.ac.uk
Xiqian Wang
Affiliation:
Advanced Materials and Processing Lab, School of Metallurgy and Materials, University of Birmingham, UK; XXW237@student.bham.ac.uk
Luke N. Carter
Affiliation:
Advanced Materials and Processing Lab, School of Metallurgy and Materials, University of Birmingham, UK; l.n.carter@bham.ac.uk
Get access

Abstract

There is increasing interest in the use of additive manufacturing (AM) for Ni-based superalloys due to their various applications in the aerospace and power-generation sectors. Ni-based superalloys are known to have a complex chemistry, with over a dozen alloying elements in most alloys, enabling them to achieve outstanding high-temperature mechanical performance as well as oxidation resistance when processed using conventional routes (e.g., casting and forging). Nonetheless, this complex chemistry results in the formation of various phases that could affect their processability using AM, resulting in cracking. Furthermore, due to the directional solidification and rapid cooling associated with AM processes, the alloys experience significant anisotropy due to the epitaxially grown microstructure, as well as the residual stresses that can sometimes be difficult to mitigate using thermal postprocessing techniques. This article highlights the outstanding issues in Ni-based superalloys AM processing, with special emphasis on defect formation mechanisms, process optimization, and residual stress development.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Donachie, M.J., Donachie, S.J., Superalloys: A Technical Guide, 2nd ed. (ASM International, Materials Park, OH, 2002).CrossRefGoogle Scholar
Durand-Charre, M., The Microstructure of Superalloys (Gordon and Breach Science Publishers, Amsterdam, 1997).Google Scholar
Schafrik, R., Sprague, R., Key Eng. Mater. 380, 113 (2008).Google Scholar
Reed, R.C., The Superalloys: Fundamentals and Applications (Cambridge University Press, New York, 2006).Google Scholar
Henderson, M.B., Arrell, D., Larsson, R., Heobel, M., Marchant, G., Sci. Technol. Weld. Joining 9, 13 (2004).Google Scholar
Young, G.A., Capobianco, T.E., Penik, M.A., Morris, B.W., McGee, J.J., Weld. J. 87, 31 (2008).Google Scholar
Ott, E.A., Groh, J., Sizek, H., Proc. Sixth Int. Special Emphasis Symp. Superalloys 718, 625, 706 and Derivatives, Loria, E.A., Ed. (The Minerals, Metals and Materials Society, Warrendale, PA, 2006), pp. 3546.Google Scholar
Harrison, N.J., Todd, I., Mumtaz, K., Acta Mater. 94, 59 (2015).CrossRefGoogle Scholar
Withers, P., Bhadeshia, H., Mater. Sci. Technol. 17, 355 (2001).Google Scholar
Mercelis, P., Kruth, J.-P., Rapid Prototyp. J. 12, 254 (2006).CrossRefGoogle Scholar
Withers, P., Bhadeshia, H., Mater. Sci. Technol. 17, 366 (2001).Google Scholar
Pinkerton, A., Shackleton, J., Moat, R., Li, L., Withers, P., Preuss, M., Allen, J., Hilton, P., Folwell, R., Proc. 24th Int. Congr. Applic. Lasers Electro-optics (ICALEO) (Laser Institute of America, Orlando, FL, 2005), pp. 601610.Google Scholar
Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R., Int. Mater. Rev. 57, 133 (2012).Google Scholar
Vrancken, B., Wauthlé, R., Kruth, J.-P., Van Humbeeck, J., Proc. Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2013), pp. 115.Google Scholar
Moat, R., Pinkerton, A., Li, L., Withers, P., Preuss, M., Mater. Sci. Eng. A 528, 2288 (2011).CrossRefGoogle Scholar
Zhong, M., Sun, H., Liu, W., Zhu, X., He, J., Scr. Mater. 53, 159 (2005).Google Scholar
Parimi, L.L., Attallah, M.M., Gebelin, J., Reed, R.C., Proc. Superalloys 2012, Huron, E.S., Reed, R.C., Hardy, M.C., Mills, M.J., Montero, R.E., Portella, P.D., Telesman, J., Eds. (Wiley, New York, 2012), pp. 509519.Google Scholar
Klingbeil, N., Beuth, J., Chin, R., Amon, C., Int. J. Mech. Sci. 44, 57 (2002).CrossRefGoogle Scholar
Prabhakar, P., Sames, W., Dehoff, R., Babu, S., Addit. Manuf. 7, 83 (2015).Google Scholar
Casavola, C., Campanelli, S., Pappalettere, C., J. Strain Anal. Eng. Des. 44, 93 (2009).Google Scholar
Griffith, M., Schlienger, M., Harwell, L., Oliver, M., Baldwin, M., Ensz, M., Essien, M., Brooks, J., Robino, C., Smugeresky, E.J., Mater. Des. 20, 107 (1999).CrossRefGoogle Scholar
Neugebauer, F., Keller, N., Hongxiao, X., Kober, C., Ploshikhin, V., Proc. Fraunhofer Direct Digital Manuf. Conf. (Fraunhofer Verlag, Stuttgart, Germany, 2014).Google Scholar
Rangaswamy, P., Griffith, M., Prime, M., Holden, T., Rogge, R., Edwards, J., Sebring, R., Mater. Sci. Eng. A 399, 72 (2005).CrossRefGoogle Scholar
Vasinonta, A., Beuth, J.L., Griffith, M.L., J. Manuf. Sci. Eng. 123, 615 (2001).CrossRefGoogle Scholar
Aggarangsi, P., Beuth, J.L., Griffith, M., Proc. Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2003), pp. 196207.Google Scholar
Beuth, J., Klingbeil, N., JOM 53, 36 (2001).Google Scholar
Dai, K., Shaw, L., Rapid Prototyp. J. 8, 270 (2002).CrossRefGoogle Scholar
Wang, L., Felicelli, S.D., Pratt, P., Mater. Sci. Eng. A 496, 234 (2008).CrossRefGoogle Scholar
Labudovic, M., Hu, D., Kovacevic, R., J. Mater. Sci. 38, 35 (2003).Google Scholar
Zaeh, M.F., Branner, G., Prod. Eng. 4, 35 (2010).Google Scholar
Moat, R., Pinkerton, A.J., Hughes, D.J., Li, L., Withers, P.J., Preuss, M., “Stress Distributions in Multilayer Laser Deposited Waspaloy Parts Measured Using Neutron Diffraction, Proc. 25th Int. Congr. on Applic. Lasers Electro-optics (ICALEO) (Laser Institute of America, Orlando, FL, 2007).Google Scholar
Song, X., Xie, M., Hofmann, F., Illston, T., Connolley, T., Reinhard, C., Atwood, R., Connor, L., Drakopoulos, M., Frampton, L., Int. J. Mater. Form. 8, 245 (2015).Google Scholar
D’Oliveira, A.S.C., da Silva, P.S.C., Vilar, R.M., Surf. Coat. Technol. 153, 203 (2002).CrossRefGoogle Scholar
Zekovic, S., Dwivedi, R., Kovacevic, R., Proc. Solid Freeform Fabr. (The University of Texas at Austin, Austin, TX, 2005).Google Scholar
Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S.M., Addit. Manuf. 8, 12 (2015).Google Scholar
Gåård, A., Krakhmalev, P., Bergström, J., J. Alloys Compd. 421, 166 (2006).CrossRefGoogle Scholar
Nickel, A., Barnett, D., Prinz, F., Mater. Sci. Eng. A 317, 59 (2001).Google Scholar
Finnie, S., Cheng, W., Finnie, I., Drezet, J.-M., Gremaud, M., J. Eng. Mater. Technol. 125, 302 (2003).Google Scholar
Kupkovits, R.A., Neu, R.W., Int. J. Fatigue 32, 1330 (2010).Google Scholar
Carter, L.N., Wang, X., Read, N., Khan, R., Aristizabal, M., Essa, K., Attallah, M.M., Mater. Sci. Technol. 32, 657 (2015).Google Scholar
Qi, H., Azer, M., Ritter, A., Metall. Mater. Trans. A 40, 2410 (2009).CrossRefGoogle Scholar
Carter, L.N., Essa, K., Attallah, M.M., Rapid Prototyp. J. 21, 423 (2015).Google Scholar
Ramsperger, M., Singer, R., Körner, C., Metall. Mater. Trans. A 47, 1469 (2016).Google Scholar
Wang, F., Wu, X., Clark, D., Mater. Sci Technol. 21, 344 (2011).Google Scholar
Jia, Q., Gu, D., J. Alloys Compd. 585, 713 (2014).CrossRefGoogle Scholar
Mumtaz, K.A., Erasenthiran, P., Hopkinson, N., J. Mater. Process. Technol. 195, 77 (2008).Google Scholar
Das, S., Fuesting, T.P., Danyo, G., Brown, L.E., Beaman, J.J., Bourell, D.L., Mater. Des. 21, 63 (2000).Google Scholar
Wei, P.S., Kou, S.C., in Advances in Multiphase Flow and Heat Transfer, Cheng, L., Ed. (Bentham Science Publishers, online, 2009), vol. 1, pp. 213232.Google Scholar
Cloots, M., Uggowitzer, P.J., Wegener, K., Mater. Des. 89, 770 (2016).Google Scholar
Helmer, H.E., Körner, C., Singer, R.F., J. Mater. Res. 29, 1987 (2014).Google Scholar
Carter, L., Attallah, M., Reed, R., Proc. Superalloys 2012, Huron, E.S., Reed, R.C., Hardy, M.C., Mills, M.J., Montero, R.E, Portella, P.D., Telesman, J., Eds. (Wiley, New York, 2012) pp. 577586.Google Scholar
Cross, C., in Hot Cracking Phenomena in Welds, Böllinghaus, T., Herold, H., Eds. (Springer, Berlin, 2005), chap. 1, pp. 318.CrossRefGoogle Scholar
Dye, D., Hunziker, O., Reed, R.C., Acta Mater. 49, 683 (2001).Google Scholar
Rush, M.T., Colegrove, P.A., Zhang, Z., Broad, D., J. Mater. Process. Technol. 212, 188 (2012).Google Scholar
Tsai, Y.-L., Wang, S.-F., Bor, H.-Y., Hsu, Y.-F., Mater. Sci. Eng. A 607, 294 (2014).Google Scholar
Heydari, D., Fard, A.S., Bakhshi, A., Drezet, J.M., J. Mater. Process. Technol. 214, 681 (2013).Google Scholar
Carter, L.N., Martin, C., Withers, P.J., Attallah, M.M., J. Alloys Compd. 615, 338 (2014).CrossRefGoogle Scholar
Young, G., Capobianco, T., Penik, M., Morris, B., McGee, J., Weld. J. 87, 31 (2008).Google Scholar
Collins, M.L., Lippold, J.C., Weld. J. 82, 288S (2003).Google Scholar
Collins, M.R., Ramirez, A., Lippold, J.C., Weld. J. 82 (12), 348S (2003).Google Scholar
Collins, M., Ramirez, A., Lippold, J., Weld. J. 83, 39 (2004).Google Scholar
Lippold, J., Welding Metallurgy and Weldability (Wiley, Hoboken, NJ, 2015).CrossRefGoogle Scholar
Bi, G., Gasser, A., Phys. Procedia 12, 402 (2011).Google Scholar
Das, S., Adv. Eng. Mater. 5, 701 (2003).Google Scholar
Parimi, L.L., Ravi, G., Clark, D., Attallah, M.M., Mater. Charact. 89, 102 (2014).CrossRefGoogle Scholar
Liu, F.., Lin, X., Yang, G.L., Song, M.H., Chen, J., Huang, W.D., Opt. Laser Technol. 43, 208 (2011).Google Scholar
Vilaro, T., Colin, C., Bartout, J.D., Naze, L., Sennour, M., Mater. Sci. Eng. A 534, 446 (2012).CrossRefGoogle Scholar
Amato, K.N., Gaytan, S.M., Murr, L.E., Martinez, E., Shindo, P.W., Hernandez, J., Collins, S., Medina, F., Acta Mater. 60, 2229 (2012).Google Scholar
Blackwell, P.L., J. Mater. Process. Technol. 170, 240 (2005).Google Scholar
Chlebus, E., Gruber, K., Kuźnicka, B., Kurzac, J., Kurzynowski, T., Mater. Sci. Eng. A 639, 647 (2015).Google Scholar