Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T06:56:46.445Z Has data issue: false hasContentIssue false

Advances in atom probe tomography instrumentation: Implications for materials research

Published online by Cambridge University Press:  08 January 2016

Michael P. Moody
Affiliation:
Department of Materials, University of Oxford, UK; michael.moody@materials.ox.ac.uk
Angela Vella
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen, Normandie University, France; angela.vella@univ-rouen.fr
Stephan S.A. Gerstl
Affiliation:
Scientific Center for Optical and Electron Microscopy, ETH Zürich, Switzerland; stephan.gerstl@scopem.ethz.ch
Paul A.J. Bagot
Affiliation:
Department of Materials, University of Oxford, UK; paul.bagot@materials.ox.ac.uk
Get access

Abstract

A series of recent instrumental advances have facilitated the application of atom probe tomography (APT) to the characterization of an increasingly wide range of materials and devices. Whereas APT was previously mostly limited to the analysis of alloys, advances in areas such as laser pulsing and detectors have enabled characterization of semiconductors and brittle materials. Most recently, ultraviolet laser pulsing has facilitated the analysis of materials previously considered not viable for the atom probe, such as minerals and large bandgap insulator materials. The development of in situ gas reaction cells fully integrated in atom probe instruments has enabled the characterization of surface reactions of materials exposed to highly controlled environments. Finally, current work toward an integrated cryo-transfer system is anticipated to create new directions for APT research.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kelly, T.F., Larson, D.J., Annu. Rev. Mater. Res. 42, 1 (2012).CrossRefGoogle Scholar
Kelly, T.F., Larson, D.J., MRS Bull. 37, 150 (2012).CrossRefGoogle Scholar
Kelly, T.F., Miller, M.K., Rev. Sci. Instrum. 78, 031101 (2007).CrossRefGoogle Scholar
Seidman, D.N., Annu. Rev. Mater. Res. 37, 127 (2007).CrossRefGoogle Scholar
Gault, B., Moody, M.P., Cairney, J.M., Ringer, S.P., Atom Probe Microscopy (Springer, New York, 2012).CrossRefGoogle Scholar
Larson, D.J., Prosa, T., Ulfig, R., Geiser, B., Kelly, T., Local Electrode Atom Probe Tomography (Springer, New York, 2014).Google Scholar
Miller, M.K., Forbes, R.G., Atom-Probe Tomography: The Local Electrode Atom Probe (Springer, New York, 2014).CrossRefGoogle Scholar
Kelly, T.F., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D.R., Strennen, E.M., Oltman, E., Bunton, J.H., Strait, D.R., Microsc. Microanal. 10, 373 (2004).CrossRefGoogle Scholar
Da Costa, G., Vurpillot, F., Bostel, A., Bouet, M., Deconihout, B., Rev. Sci. Instrum. 76, 013304 (2004).CrossRefGoogle Scholar
Bemont, E., Bostel, A., Bouet, M., Da Costa, G., Chambreland, S., Deconihout, B., Hono, K., Ultramicroscopy 95, 231 (2003).CrossRefGoogle Scholar
Cerezo, A., Godfrey, T.J., Sijbrandij, S.J., Smith, G.D.W., Warren, P.J., Rev. Sci. Instrum. 69, 49 (1998).CrossRefGoogle Scholar
Inoue, K., Kambham, A.K., Mangelinck, D., Lawrence, D., Larson, D.J., Microsc. Today 20, 38 (2012).CrossRefGoogle Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R., Kelly, T.E., Microsc. Microanal. 13, 418 (2007).CrossRefGoogle Scholar
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D., Deconihout, B., Rev. Sci. Instrum. 77, 043705 (2006).CrossRefGoogle Scholar
Karlsson, J., Sundell, G., Thuvander, M., Andersson, M., Nano Lett. 14, 4220 (2014).CrossRefGoogle Scholar
Chen, Y., Reed, R., Marquis, E., Scr. Mater. 67, 779 (2012).CrossRefGoogle Scholar
Marquis, E.A., Yahya, N.A., Larson, D.J., Miller, M.K., Todd, R.I., Mater. Today 13, 34 (2010).CrossRefGoogle Scholar
Valley, J.W., Cavosie, A.J., Ushikubo, T., Reinhard, D.A., Lawrence, D.F., Larson, D.J., Clifton, P.H., Kelly, T.F., Wilde, S.A., Moser, D.E., Spicuzza, M.J., Nat. Geosci. 7, 219 (2014).CrossRefGoogle Scholar
Perea, D.E., Arslan, I., Liu, J., Ristanovic, Z., Kovarik, L., Arey, B.W., Lercher, J.A., Bare, S.R., Weckhuysen, B.M., Nat. Commun. 6, 7589 (2015).CrossRefGoogle Scholar
Gordon, L.M., Cohen, M.J., MacRenaris, K.W., Pasteris, J.D., Seda, T., Joester, D., Science 347, 746 (2015).CrossRefGoogle Scholar
Gault, B., Chen, Y.M., Moody, M.P., Ohkubo, T., Hono, K., Ringer, S.P., J. Appl. Phys. 110, 094901 (2011).CrossRefGoogle Scholar
Hono, K., Ohkubo, T., Chen, Y.M., Kodzuka, M., Oh-ishi, K., Sepehri-Amin, H., Li, F., Kinno, T., Tomiya, S., Kanitani, Y., Ultramicroscopy 111, 576 (2011).CrossRefGoogle Scholar
Stiller, K., Viskari, L., Sundell, G., Liu, F., Thuvander, M., Andrén, H.-O., Larson, D.J., Prosa, T., Reinhard, D., Oxid. Met. 79, 227 (2013).CrossRefGoogle Scholar
Vella, A., Mazumder, B., Da Costa, G., Deconihout, B., J. Appl. Phys. 110, 044321 (2011).CrossRefGoogle Scholar
Tamura, H., Tsukada, M., McKenna, K.P., Shluger, A.L., Ohkubo, T., Hono, K., Phys. Rev. B Condens. Matter 86, 195430 (2012).CrossRefGoogle Scholar
Kelly, T.F., Vella, A., Bunton, J.H., Houard, J., Silaeva, E.P., Bogdanowicz, J., Vandervorst, W., Curr. Opin. Solid State Mater. Sci. 18, 81 (2014).CrossRefGoogle Scholar
Silaeva, E.P., Arnoldi, L., Karahka, M.L., Deconihout, B., Menand, A., Kreuzer, H.J., Vella, A., Nano Lett. 14, 6066 (2014).CrossRefGoogle Scholar
Bogdanowicz, J., Gilbert, M., Innocenti, N., Koelling, S., Vanderheyden, B., Vandervorst, W., Opt. Express 21, 3891 (2013).CrossRefGoogle Scholar
Mancini, L., Amirifar, N., Shinde, D., Blum, I., Gilbert, M., Vella, A., Vurpillot, F.O., Lefebvre, W., Lardé, R., Talbot, E., J. Phys. Chem. C 118, 24136 (2014).CrossRefGoogle Scholar
Diercks, D.R., Gorman, B.P., Kirchhofer, R., Sanford, N., Bertness, K., Brubaker, M., J. Appl. Phys. 114, 184903 (2013).CrossRefGoogle Scholar
Ahmad, M., Tsong, T.T., Appl. Phys. Lett. 44, 40 (1984).CrossRefGoogle Scholar
Barroo, C., Lambeets, S.V., Devred, F., Chau, T.D., Kruse, N., De Deckerb, Y., de Bocarme, T.V., New J. Chem. 38, 2090 (2014).CrossRefGoogle Scholar
Bagot, P.A.J., de Bocarme, T.V., Cerezo, A., Smith, G.D.W., Surf. Sci. 600, 3028 (2006).CrossRefGoogle Scholar
Bagot, P.A.J., Cerezo, A., Smith, G.D.W., Surf. Sci. 601, 2245 (2007).CrossRefGoogle Scholar
Bagot, P.A.J., Cerezo, A., Smith, G.D.W., Surf. Sci. 602, 1381 (2008).CrossRefGoogle Scholar
Dumpala, S., Broderick, S.R., Bagot, P.A.J., Rajan, K., Ultramicroscopy 141, 16 (2014).CrossRefGoogle Scholar
Gemma, R., Al-Kassab, T., Kirchheim, R., Pundt, A., Ultramicroscopy 109, 631 (2009).CrossRefGoogle Scholar
Haley, D., Merzlikin, S.V., Choi, P., Raabe, D., Int. J. Hydrogen Energy 39, 12221 (2014).CrossRefGoogle Scholar
Takahashi, J., Kawakami, K., Kobayashi, Y., Tarui, T., Scr. Mater. 63, 261 (2010).CrossRefGoogle Scholar
Panitz, J., J. Vac. Sci. Technol. A 7, 2850 (1989).CrossRefGoogle Scholar
Pogatscher, S., Antrekowitsch, H., Werinos, M., Moszner, F., Gerstl, S., Francis, M., Curtin, W., Löffler, J., Uggowitzer, P., Phys. Rev. Lett. 112, 225701 (2014).CrossRefGoogle Scholar
Celarek, A., Kraus, T., Tschegg, E.K., Fischerauer, S.F., Stanzl-Tschegg, S., Uggowitzer, P.J., Weinberg, A.M., Mater. Sci. Eng. C 32, 1503 (2012).CrossRefGoogle Scholar
Gerstl, S.S.A., Wepf, R., Microsc. Microanal. 21, 517 (2015).CrossRefGoogle Scholar
Gerstl, S.S.A., Scherrer, B., Cairney, J.M., Spolenak, R., Wepf, R., AVS 62nd International Symposium & Exhibition (2015).Google Scholar
Kelly, T.F., Miller, M.K., Rajan, K., Ringer, S.P., Microsc. Microanal. 19, 652 (2013).CrossRefGoogle Scholar