Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-11T06:09:27.209Z Has data issue: false hasContentIssue false

Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes

Published online by Cambridge University Press:  14 July 2011

Jeffrey W. Long
Affiliation:
U.S. Naval Research Laboratory, Washington, DC 20375, USA; jeffrey.long@nrl.navy.mil
Daniel Bélanger
Affiliation:
Département de Chimie, Université du Québec à Montréal, Canada H3C 3P8; belanger.daniel@uqam.ca
Thierry Brousse
Affiliation:
University of Nantes, France; thierry.brousse@univ-nantes.fr
Wataru Sugimoto
Affiliation:
Shinshu University, Ueda, Nagano 386-8567, Japan; wsugi@shinshu-u.ac.jp
Megan B. Sassin
Affiliation:
U.S. Naval Research Laboratory, Washington, DC 20375, USA; megan.sassin@nrl.navy.mil
Olivier Crosnier
Affiliation:
University of Nantes, France; olivier.crosnier@univ-nantes.fr
Get access

Abstract

Ongoing technological advances in such disparate areas as consumer electronics, transportation, and energy generation and distribution are often hindered by the capabilities of current energy storage/conversion systems, thereby driving the search for high-performance power sources that are also economically viable, safe to operate, and have limited environmental impact. Electrochemical capacitors (ECs) are a class of energy-storage devices that fill the gap between the high specific energy of batteries and the high specific power of conventional electrostatic capacitors. The most widely available commercial EC, based on a symmetric configuration of two high-surface-area carbon electrodes and a nonaqueous electrolyte, delivers specific energies of up to ∼6 Whkg–1 with sub-second response times. Specific energy can be enhanced by moving to asymmetric configurations and selecting electrode materials (e.g., transition metal oxides) that store charge via rapid and reversible faradaic reactions. Asymmetric EC designs also circumvent the main limitation of aqueous electrolytes by extending their operating voltage window beyond the thermodynamic 1.2 V limit to operating voltages approaching ∼2 V, resulting in high-performance ECs that will satisfy the challenging power and energy demands of emerging technologies and in a more economically and environmentally friendly form than conventional symmetric ECs and batteries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Publishers, New York 1999).CrossRefGoogle Scholar
2.Conway, B.E., J. Electrochem. Soc. 138, 1539 (1991).CrossRefGoogle Scholar
3.Burke, A., J. Power Sources 91, 37 (2000).Google Scholar
4.Huggins, R.A., Solid State Ionics 134, 179 (2000).CrossRefGoogle Scholar
5.Conte, M., Fuel Cells 10, 806 (2010).CrossRefGoogle Scholar
6.Burke, A., Int. J. Energy Res. 34, 133 (2010).CrossRefGoogle Scholar
7.Rightmire, R.A., U.S. Patent 3,288,641 (November 29, 1966).CrossRefGoogle Scholar
11.Frackowiak, E., Béguin, F., Carbon 39, 937 (2001).CrossRefGoogle Scholar
12.Frackowiak, E., Phys. Chem. Chem. Phys. 9, 1774 (2007).CrossRefGoogle Scholar
13.Zhang, L.L., Zhao, X.S., Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
14.Simon, P., Burke, A., ECS Interface 17 (1), 38 (2008).Google Scholar
15.Biener, J., Stadermann, M., Suss, M., Worsley, M.A., Biener, M.M., Rose, K.A., Baumann, T.F., Energy Environ. Sci. 4, 656 (2011).CrossRefGoogle Scholar
16.Zhang, H., Cao, G.P., Yang, Y.S., Energy Environ. Sci. 2, 932 (2009).CrossRefGoogle Scholar
17.Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., Taberna, P.L., Science 313, 1760 (2006).CrossRefGoogle Scholar
18.Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S., Nano Lett. 8, 3498 (2008).CrossRefGoogle Scholar
19.Miller, J., Outlaw, R.A., Holloway, B.C., Science 329, 1637 (2010).CrossRefGoogle ScholarPubMed
20.Choudhury, N.A., Sampath, S., Shukla, A.K., Energy Environ. Sci. 2, 55 (2009).CrossRefGoogle Scholar
21.Conway, B.E., Birss, V., Wojtowicz, J., J. Power Sources 66, 1 (1997).Google Scholar
22.Simon, P., Gogotsi, Y., Nat. Mater. 7, 845 (2008).Google Scholar
23.Zhao, X., Sánchez, B.M., Dobson, P.J., Grant, P.S., Nanoscale 3, 839 (2011).CrossRefGoogle Scholar
24.Liu, T.C., Pell, W.G., Conway, B.E., Roberson, S.L., J. Electrochem. Soc. 145, 1882 (1998).CrossRefGoogle Scholar
25.Choi, D., Blomgren, G.E., Kumta, P.N., Adv. Mater. 18, 1178 (2006).Google Scholar
26.Snook, G.A., Kao, P., Best, A.S., J. Power Sources 196, 1 (2011).CrossRefGoogle Scholar
27.Zheng, J.P., Cyang, P.J., Jow, T.R., J. Electrochem. Soc. 142, 2699 (1995).CrossRefGoogle Scholar
28.Dmowski, W., Egami, T., Swider-Lyons, K.E., Love, C.T., Rolison, D.R., J. Phys. Chem. B 106, 12677 (2002).CrossRefGoogle Scholar
29.Fu, R., Ma, Z., Zheng, J.P., J. Phys. Chem. B 106, 3592 (2002).CrossRefGoogle Scholar
30.Sugimoto, W., Iwata, H., Yokoshima, K., Murakami, Y., Takasu, Y., J. Phys. Chem. B 109, 7330 (2005).Google Scholar
31.Sugimoto, W., Iwata, H., Yasunaga, Y., Murakami, Y., Takasu, Y., Angew. Chem. Int. Ed. 42, 4092 (2003).CrossRefGoogle Scholar
32.Fukuda, K., Saida, T., Sato, J., Yonezawa, M., Takasu, Y., Sugimoto, W., Inorg. Chem. 49, 4391 (2010).CrossRefGoogle Scholar
33.Fukuda, K., Kato, H., Sugimoto, W., Takasu, Y., J. Solid State Chem. 182, 2997 (2009).CrossRefGoogle Scholar
34.Kim, H., Popov, B.N., J. Power Sources 104, 52 (2002).CrossRefGoogle Scholar
35.Min, M., Machida, K., Jang, J.H., Naoi, K., J. Electrochem. Soc. 153, A334 (2006).Google Scholar
36.Naoi, K., Ishimoto, S., Ogihara, N., Nakagawa, Y., Hatta, S., J. Electrochem. Soc. 156 A52 (2009).CrossRefGoogle Scholar
37.Chervin, C.N., Lubers, A.M., Long, J.W., Rolison, D.R., J. Electroanal. Chem. 644, 155 (2010).CrossRefGoogle Scholar
38.Arnold, C.B., Wartena, R.C., Swider-Lyons, K.E., Piqué, A., J. Electrochem. Soc. 150, A571 (2003).CrossRefGoogle Scholar
39.Sugimoto, W., Yokoshima, K., Ohuchi, K., Murakami, Y., Takasu, Y., J. Electrochem. Soc. 153, A255 (2006).CrossRefGoogle Scholar
40.Lee, H.Y., Goodenough, J.B., J. Solid State Chem. 144, 220 (1999).CrossRefGoogle Scholar
41.Bélanger, D., Brousse, T., Long, J.W., ECS Interface 17 (1), 49 (2008).Google Scholar
42.Zhang, Z.W., Chen, G.Z., Energy Mater. 3, 186 (2008).CrossRefGoogle Scholar
43.Wei, W.F., Cui, X.W., Chen, W.X., Ivey, D.G., Chem. Soc. Rev. 40, 1697 (2011).CrossRefGoogle Scholar
44.Toupin, M., Brousse, T., Bélanger, D., Chem. Mater. 16, 3184 (2004).CrossRefGoogle Scholar
45.Kuo, S.-L., Wu, N.-L., J. Electrochem. Soc. 153, A1317 (2006).CrossRefGoogle Scholar
46.Kanoh, H., Tang, W., Makita, Y., Ooi, K., Langmuir 13, 6845 (1997).CrossRefGoogle Scholar
47.Ghodbane, O., Pascal, J.-L., Favier, F., ACS Appl. Mater. Interfaces 1, 1130 (2009).CrossRefGoogle Scholar
48.Pang, S.-C., Anderson, M.A., Chapman, T.W., J. Electrochem. Soc. 147, 444 (2000).CrossRefGoogle Scholar
49.Brousse, T., Toupin, M., Dugas, R., Athouël, L., Crosnier, O., Bélanger, D., J. Electrochem. Soc. 153, A2171 (2006).CrossRefGoogle Scholar
50.Lee, H.Y., Kim, S.Y., Lee, H.Y., Electrochem. Solid-State Lett. 4, A19 (2001).CrossRefGoogle Scholar
51.Dong, X., Shen, W., Gu, J., Xiong, L., Zhu, Y., Li, H., Shi, J., J. Phys. Chem. B 110, 6015 (2006).CrossRefGoogle Scholar
52.Subramanian, V., Zhu, H.W., Wei, B.Q., Electrochem. Commun. 8, 827 (2006).CrossRefGoogle Scholar
53.Ma, S.B., Nam, K.W., Yoon, W.S., Yang, X.Q., Ahn, K.Y., Oh, K.H., Kim, K.B., J. Power Sources 178, 43 (2008).CrossRefGoogle Scholar
54.Bordjiba, T., Bélanger, D., J. Electrochem. Soc. 156, A378 (2009).CrossRefGoogle Scholar
55.Zhang, S., Peng, C., Ng, K.C., Chen, G.Z., Electrochim. Acta 55, 7447 (2010).CrossRefGoogle Scholar
56.Fischer, A.E., Pettigrew, K.A., Rolison, D.R., Stroud, R.M., Long, J.W., Nano Lett. 7, 281 (2007).CrossRefGoogle Scholar
57.Yan, J., Fan, Z.J., Wei, T., Qian, W.Z., Zhang, M.L., Wei, F., Carbon 48, 3825 (2010).CrossRefGoogle Scholar
58.Hsieh, Y.C., Lee, K.T., Lin, Y.P., Wu, N.L., Donne, S.W., J. Power Sources 177, 660 (2008).CrossRefGoogle Scholar
59.Ataherian, F., Lee, K.-T., Wu, N.-L., Electrochim. Acta 55, 7429 (2010).CrossRefGoogle Scholar
60.Cottineau, T., Toupin, M., Delahaye, T., Brousse, T., Bélanger, D., Appl. Phys. A 82, 599 (2006).CrossRefGoogle Scholar
61.Raymundo-Pinero, E., Khomenko, V., Frackowiak, E., Béguin, F., J. Electrochem. Soc. 152, A229 (2005).CrossRefGoogle Scholar
62.Razoumov, S., Litvinenko, S., Beliakov, A., “Asymmetric electrochemical capacitor and method of making,” U.S. Patent 6,222,723 (April 2001).Google Scholar
63.Pell, W.G., Conway, B.E., J. Power Sources 136, 334 (2004).CrossRefGoogle Scholar
65.www.axionpower.com, see technology section (PbC® technology).Google Scholar
66.Hong, M.S., Lee, S.H., Kim, S.W., Electrochem. Solid-State Lett. 5, A227 (2002).CrossRefGoogle Scholar
67.Brousse, T., Toupin, M., Bélanger, D., J. Electrochem. Soc. 151, A614 (2004).CrossRefGoogle Scholar
68.Khomenko, V., Raymundo-Piñero, E., Frackowiak, E., Béguin, F., Appl. Phys. A 82, 567 (2006).CrossRefGoogle Scholar
69.Béguin, F., Kierzek, K., Friebe, M., Jankowska, A., Machnikowski, J., Juewicz, K., Frackowiak, E., Electrochim. Acta 51, 2161 (2006).CrossRefGoogle Scholar
70.Qin, X., Gao, X.P., Liu, H., Yuan, H.T., Yan, D.Y., Gong, W.L., Song, D.Y., Electrochem. Solid-State Lett. 3, 532 (2000).CrossRefGoogle Scholar
71.Vix-Guterl, C., Frackowiak, E., Jurewicz, K., Friebe, M., Parmentier, J., Béguin, F., Carbon 43, 1293 (2005).CrossRefGoogle Scholar
72.Jurewicz, K., Frackowiak, E., Béguin, F., Appl. Phys. A 78, 981 (2004).CrossRefGoogle Scholar
73.Béguin, F., Friebe, M., Jurewicz, K., Vix-Guterl, C., Dentzer, J., Frackowiak, E., Carbon 44, 2392 (2006).CrossRefGoogle Scholar
74.Qu, D., J. Power Sources 179, 310 (2008).CrossRefGoogle Scholar
75.Bleda-Martínez, M.J., Pérez, J.M., Linares-Solano, A., Morallón, E., Cazorla-Amorós, D., Carbon 46, 1053 (2008).CrossRefGoogle Scholar
76.Kalinathan, K., DesRoches, D.P., Liu, X.R., Pickup, P.G., J. Power Sources 181, 182 (2008).CrossRefGoogle Scholar
77.Pognon, G., Brousse, T., Demarconnay, L., Bélanger, D., J. Power Sources 196, 4117 (2011).CrossRefGoogle Scholar
78.Andreas, H.A., Conway, B.E., Electrochim. Acta 51, 6510 (2006).CrossRefGoogle Scholar
79.Brousse, T., Bélanger, D., Electrochem. Solid-State Lett. 6, A244 (2003).CrossRefGoogle Scholar
80.Jin, W.-H., Cao, G.T., Sun, J.Y., J. Power Sources 175 686 (2008).CrossRefGoogle Scholar
81.Sassin, M.B., Mansour, A.N., Pettigrew, K.A., Rolison, D.R., Long, J.W., ACS Nano 4, 4505 (2010).CrossRefGoogle Scholar
82.Santos-Peña, J., Crosnier, O., Brousse, T., Electrochim. Acta 55, 7511 (2010).CrossRefGoogle Scholar
83.Ng, K.C., Zhang, S., Peng, C., Chen, G.Z., J. Electrochem. Soc. 156, A846 (2009).CrossRefGoogle Scholar
84.Reiman, K.H., Brace, K.M., Gordon-Smith, T.J., Nandhakumar, I., Attard, G.S., Owen, J.R., Electrochem. Comm. 8, 517 (2006).CrossRefGoogle Scholar
85.Lu, L., Zhu, Y., Li, F., Zhuang, W., Chan, K.Y., Lu, X., J. Mater. Chem. 20, 7645 (2010).CrossRefGoogle Scholar
86.Luo, J.-Y., Xia, Y.-Y., J. Power Sources 186, 224 (2009).CrossRefGoogle Scholar
87.Sarangapani, S., in Handbook of Solid State Batteries and Capacitors, Munshi, M.Z.A., Ed. (World Scientific, Singapore, 1995), pp. 601.CrossRefGoogle Scholar
88.Stoller, M.D., Ruoff, R.S., Energy Environ. Sci. 3, 1294 (2010).CrossRefGoogle Scholar
89.Burke, A., Miller, M., Electrochim. Acta 55, 7538 (2010).CrossRefGoogle Scholar
90.Peng, C., Zhang, S., Zhou, X., Chen, G.Z., Energy Environ. Sci. 3, 1499 (2010).CrossRefGoogle Scholar
91.Demarconnay, L., Raymundo-Piñero, E., Béguin, F., J. Power Sources 196, 580 (2011).CrossRefGoogle Scholar
92.Burke, A., Miller, M., J. Power Sources 196, 514 (2011).CrossRefGoogle Scholar
93.Zheng, J.P., J. Electrochem. Soc. 150, A484 (2003).CrossRefGoogle Scholar
94.Battery Test Manual for Plug-in Hybrid Electric Vehicles, U.S. Department of Energy, Vehicle Technology Program, INL/EXT-07–12536 (March 2008).Google Scholar
95.Taberna, P.L., Simon, P., Fauvarque, J.F., J. Electrochem. Soc. 150, A292 (2003).CrossRefGoogle Scholar
96.Brousse, T., Taberna, P.L., Crosnier, O., Dugas, R., Guillemet, P., Scudeller, Y., Zhou, Y., Favier, F., Bélanger, D., Simon, P., J. Power Sources 173, 633 (2007).CrossRefGoogle Scholar
97.Wu, Z.-S., Ren, W., Wang, D.-W., Li, F., Liu, B., Cheng, H.-M., ACS Nano 4, 5835 (2010).CrossRefGoogle Scholar
98.Lin, Y.-P., Wu, N.-L., J. Power Sources 196, 851 (2011).CrossRefGoogle Scholar
99.Yuan, A., Wang, X., Wang, Y., Hu, J., Energy Convers. Manage. 51, 2588 (2010).CrossRefGoogle Scholar
100.Khomenko, V., Raymundo-Piñero, E., Béguin, F., J. Power Sources 153, 183 (2006).CrossRefGoogle Scholar
101.Wang, Y.-G., Xia, Y.-Y., J. Electrochem. Soc. 153, A450 (2006).CrossRefGoogle Scholar
102.Qu, Q., Li, L., Tian, S., Guo, W., Wu, Y., Holze, R., J. Power Sources 195, 2789 (2010).CrossRefGoogle Scholar
103.Malak, A., Fic, K., Lota, G., Vix-Guterl, C., Frackowiak, E., J. Solid State Electrochem. 14, 811 (2010).CrossRefGoogle Scholar
104.Staiti, P., Lufrano, F., Electrochim. Acta 55, 7436 (2010).CrossRefGoogle Scholar
105.Algharaibeh, Z., Pickup, P.G., Electrochem. Commun. 13, 147 (2011).CrossRefGoogle Scholar
106.Algharaibeh, Z., Liu, X., Pickup, P.G., J. Power Sources 187, 640 (2009).CrossRefGoogle Scholar
107.Khomenko, V., Raymundo-Pinero, E., Béguin, F., J. Power Sources 195, 4234 (2010).CrossRefGoogle Scholar
108.Yu, N., Gao, L., Electrochem. Commun. 11, 220 (2009).CrossRefGoogle Scholar
109.Suppes, G.M., Cameron, C.G., Freund, M.S., J. Electrochem. Soc. 157, A1030 (2010).CrossRefGoogle Scholar
110.Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L., J. Electrochem. Soc. 157, A1341 (2010).CrossRefGoogle Scholar
111.Inoue, H., Namba, Y., Higuchi, E., J. Power Sources 195, 6239 (2010).CrossRefGoogle Scholar
112.Chang, K.-H., Hu, C.-C., Huang, C.-M., Liu, Y.-L., Chang, C.-I, J. Power Sources 196, 2387 (2011).CrossRefGoogle Scholar
113.Brousse, T., Bélanger, D., Electrochem. Solid-State Lett. 6, A244 (2003).CrossRefGoogle Scholar
114.Lin, Y.-P., Wu, N.-L., J. Power Sources 196, 851 (2011).CrossRefGoogle Scholar
115.Guillemet, P., Scudeller, Y., Brousse, T., J. Power Sources 157, 630 (2006).CrossRefGoogle Scholar
116.Klementov, A.D., Litvinenko, S.V., Stepanov, A.V., Varakin, I.N., Proceedings of the 11th Seminar on Double-Layer Capacitors, Deerfield Beach, FL, USA, 3–5 December 2001.Google Scholar
117.Mosqueda, H.A., Crosnier, O., Athouël, L., Dandeville, Y., Scudeller, Y., Guillemet, P.H., Schleich, D.M., Brousse, T., Electrochim. Acta 55, 7479 (2010).CrossRefGoogle Scholar
118.Brousse, T., Taberna, P.L., Crosnier, O., Dugas, R., Guillemet, P., Scudeller, Y., Zhou, Y., Favier, F., Bélanger, D., Simon, P., J. Power Sources 173, 633 (2007).CrossRefGoogle Scholar