Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T07:20:55.378Z Has data issue: false hasContentIssue false

Atom probe tomography of metallic nanostructures

Published online by Cambridge University Press:  08 January 2016

Kazuhiro Hono
Affiliation:
Magnetic Materials Unit, National Institute for Materials Science, Japan; kazuhiro.hono@nims.go.jp
Dierk Raabe
Affiliation:
Department of Microstructure Physics and Alloy Design, Max Planck Institute for Iron Research, Germany; d.raabe@mpie.de
Simon P. Ringer
Affiliation:
Australian Institute for Nanoscale Science and Technology, and School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Australia; simon.ringer@sydney.edu.au
David N. Seidman
Affiliation:
Department of Materials Science and Engineering and the Northwestern University Center for Atom Probe Tomography, Northwestern University, USA; d-seidman@northwestern.edu
Get access

Abstract

This article focuses on four topics that demonstrate the importance of atom probe tomography for obtaining nanostructural information that provides deep insights into the structures of metallic alloys, leading to a better understanding of their properties. First, we discuss the microstructure–coercivity relationship of Nd-Fe-B permanent magnets, essential for developing a higher coercivity magnet. Second, we address equilibrium segregation at grain boundaries with the aim of manipulating their interfacial structure, energies, compositions, and properties, thereby enabling beneficial material behavior. Third, recent progress in the search to extend the performance and practicality of the next generation of advanced high-strength steels is discussed. Finally, a study of the temporal evolution of a Ni-Al-Cr alloy through the stages of nucleation, growth, and coarsening (Ostwald ripening) and its relationship with the predictions of a model for quasi-stationary coarsening is described. This information is critical for understanding high-temperature mechanical properties of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hono, K., Sepehri-Amin, H., Scr. Mater. 67, 503 (2012).CrossRefGoogle Scholar
Li, W.F., Ohkubo, T., Hono, K., Acta Mater. 57, 1337 (2009).CrossRefGoogle Scholar
Sepehri-Amin, H., Ohkubo, T., Shima, T., Hono, K., Acta Mater. 60, 819 (2012).CrossRefGoogle Scholar
Liu, J., Sepehri-Amin, H., Ohkubo, T., Hioki, K., Hattori, A., Schrefl, T., Hono, K., Acta Mater. 61, 5387 (2013).CrossRefGoogle Scholar
Sepehri-Amin, H., Ohkubo, T., Nagashima, S., Yano, M., Shoji, T., Kato, A., Schrefl, T., Hono, K., Acta Mater. 61, 6622 (2013).CrossRefGoogle Scholar
Akiya, T., Liu, J., Sepehri-Amin, H., Ohkubo, T., Hioki, K., Hattori, A., Hono, K., Scr. Mater. 81, 48 (2014).CrossRefGoogle Scholar
Krakauer, B.W., Seidman, D.N., Acta Mater. 46, 6145 (1998).CrossRefGoogle Scholar
Seidman, D.N., Annu. Rev. Mater. Res. 37, 127 (2007).CrossRefGoogle Scholar
Herbig, M., Raabe, D., Li, Y.J., Choi, P.-P., Zaefferer, S., Goto, S., Phys. Rev. Lett. 112, 126103 (2014).CrossRefGoogle Scholar
Kuzmina, M., Herbig, M., Ponge, D., Sandlöbes, S., Raabe, D., Science 349, 1080 (2015).CrossRefGoogle Scholar
Felfer, P.J., Alam, T., Ringer, S.P., Cairney, J.M., Microsc. Res. Tech. 75, 484 (2012).CrossRefGoogle Scholar
Krakauer, B.W., Hu, J.G., Kuo, S.M., Mallick, R.L., Seki, A., Seidman, D.N., Baker, J.P., Loyd, R.J., Rev. Sci. Instrum. 61, 3390 (1990).CrossRefGoogle Scholar
Raabe, D., Choi, P.-P., Li, Y.J., Kostka, A., Sauvage, X., Lecouturier, F., Hono, K., Kirchheim, R., Pippan, R., Embury, D., MRS Bull. 35, 982 (2010).CrossRefGoogle Scholar
Li, Y.J., Choi, P.P., Borchers, C., Westerkamp, S., Goto, S., Raabe, D., Kirchheim, R., Acta Mater. 59, 3965 (2011).CrossRefGoogle Scholar
Raabe, D., Herbig, M., Sandlöbes, S., Li, Y., Tytko, D., Kuzmina, M., Ponge, D., Choi, P.-P., Curr. Opin. Solid State Mater. Sci. 18, 253 (2014).CrossRefGoogle Scholar
Kuzmina, M., Ponge, D., Raabe, D., Acta Mater. 86, 182 (2015).CrossRefGoogle Scholar
Raabe, D., Sandlöbes, S., Millán, J., Ponge, D., Assadi, H., Herbig, M., Choi, P.-P., Acta Mater. 61, 6132 (2013).CrossRefGoogle Scholar
Kirchheim, R., Acta Mater. 55, 5129 (2007).CrossRefGoogle Scholar
Detor, A.J., Schuh, C.A., Acta Mater. 55, 4221 (2007).CrossRefGoogle Scholar
Weissmüller, J., Krauss, W., Haubold, T., Birringer, R., Gleiter, H., Nanostruct. Mater. 1, 439 (1992).CrossRefGoogle Scholar
Chen, Y.Z., Herz, A., Li, Y.J., Borchers, C., Choi, P.-P., Raabe, D., Kirchheim, R., Acta Mater. 61, 3172 (2013).CrossRefGoogle Scholar
Li, Y.J., Raabe, D., Herbig, M., Choi, P.-P., Goto, S., Kostka, A., Yarita, H., Borchers, C., Kirchheim, R., Phys. Rev. Lett. 113, 106104 (2014).CrossRefGoogle Scholar
Herbig, M., Choi, P., Raabe, D., Ultramicroscopy 153, 32 (2015).CrossRefGoogle Scholar
Tytko, D., Choi, P.-P., Klöwer, J., Kostka, A., Inden, G., Raabe, D., Acta Mater. 60, 1731 (2012).CrossRefGoogle Scholar
Yen, H.-W., Ooi, S.W., Eizadjou, M., Breen, A.J., Huang, C.-Y., Bhadeshia, H.K.D.H., Ringer, S.P., Acta Mater. 82, 100 (2015).CrossRefGoogle Scholar
Gault, B., Moody, M.P., Cairney, J.M., Ringer, S.P., Atom Probe Microscopy (Springer, New York, 2012).CrossRefGoogle Scholar
Bouaziz, O., Allain, S., Scott, C.P., Cugy, P., Barbier, D., Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).CrossRefGoogle Scholar
Trimby, P.W., Ultramicroscopy 120, 16 (2012).CrossRefGoogle Scholar
De Cooman, B.C., Chin, K.G., Kim, J.Y., “High Mn TWIP Steels for Automotive Applications,” in New Trends and Developments in Automotive System Engineering, Chiaberge, M., Ed. (InTech, 2011), pp. 101128.Google Scholar
Luo, H., Shi, J., Wang, C., Cao, W., Sun, X., Dong, H., Acta Mater. 59, 4002 (2011).CrossRefGoogle Scholar
Suh, D.W., Ryu, J.H., Joo, M.S., Yang, H.S., Lee, K., Bhadeshia, H.K.D.H., Metall. Mater. Trans. A 44A, 286 (2013).CrossRefGoogle Scholar
De Cooman, B.C., Gibbs, P., Lee, S., Matlock, D.K., Metall. Mater. Trans. A 44A, 2563 (2013).CrossRefGoogle Scholar
Andersson, J.O., Helander, T., Hoglund, L.H., Shi, P.F., Sundman, B., Calphad 26, 273 (2002).CrossRefGoogle Scholar
Booth-Morrison, C., Zhou, Y., Noebe, R.D., Seidman, D.N., Philos. Mag. 90, 219 (2010).CrossRefGoogle Scholar
Lund, A.C., Voorhees, P.W., Acta Mater. 50, 2585 (2002).CrossRefGoogle Scholar
Booth-Morrison, C., Weninger, J., Sudbrack, C.K., Mao, Z., Noebe, R.D., Seidman, D.N., Acta Mater. 56, 3422 (2008).CrossRefGoogle Scholar
Sudbrack, C.K., Yoon, K.E., Noebe, R.D., Seidman, D.N., Acta Mater. 54, 3199 (2006).CrossRefGoogle Scholar
Martin, G., in Solid State Phase Transformation in Metals and Alloys (Les Éditions de Physique, Orsay, France, 1978), p. 337.Google Scholar
Sudbrack, C.K., Noebe, R.D., Seidman, D.N., Acta Mater. 55, 119 (2007).CrossRefGoogle Scholar
Kuehmann, C.J., Voorhees, P.W., Metall. Mater. Trans. A 27A, 937 (1996).CrossRefGoogle Scholar
Philippe, T., Voorhees, P.W., Acta Mater. 64, 4237 (2013).CrossRefGoogle Scholar
Morral, J.E., Purdy, G.R., Scr. Metall. Mater. 30, 905 (1994).CrossRefGoogle Scholar
Umantsev, A., Olson, G.B., Scr. Metall. Mater. 29, 1135 (1993).CrossRefGoogle Scholar