Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T08:05:26.771Z Has data issue: false hasContentIssue false

Atom-by-atom fabrication by electron beam via induced phase transformations

Published online by Cambridge University Press:  08 September 2017

Nan Jiang
Affiliation:
Department of Physics, Arizona State University, USA; nan.jiang@asu.edu
Eva Zarkadoula
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, USA; zarkadoulae@ornl.gov
Prineha Narang
Affiliation:
John A. Paulson School of Engineering and Applied Sciences, Harvard University, USA; pnarang@fas.harvard.edu
Artem Maksov
Affiliation:
Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, USA; amaksov@vols.utk.edu
Ivan Kravchenko
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, USA; kravchenkoii@ornl.gov
Albina Borisevich
Affiliation:
Materials Science and Engineering Division, Oak Ridge National Laboratory, USA; albinab@ornl.gov
Stephen Jesse
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, USA; sjz@ornl.gov
Sergei V. Kalinin
Affiliation:
Institute for Functional Imaging of Materials, and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, USA; sergei2@ornl.gov
Get access

Abstract

New developments in manufacturing and automation, from three-dimensional printing to the “Internet of things,” signify dramatic changes in our society. The push toward quantum materials is driving device fabrication toward atomic precision. Recent results suggest that scanning transmission electron microscopy (STEM) with sub-angstrom scale beams could offer a solution. However, a detailed theoretical understanding of the interaction of the electron beam with solids is needed to form a basis for new technology. This article summarizes the existing literature on electron-beam interactions with solids with a focus on irreversible transformation. We further suggest that the theoretical framework of a two-temperature model developed for fast ion damage in solids could be applicable to predicting the effects of fast electrons. Recent results from STEM-directed epitaxial growth on crystalline–amorphous interfaces are discussed in detail. Finally, perspectives on the development of this field in the near future are offered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schwab, K., The Fourth Industrial Revolution (Crown Business, New York, 2017).Google Scholar
Mannoor, M.S., Jiang, Z., James, T., Kong, Y.L., Malatesta, K.A., Soboyejo, W.O., Verma, N., Gracias, D.H., McAlpine, M.C., Nano Lett. 13 (6), 2634 (2013).Google Scholar
Dehoff, R.R., Kirka, M.M., Sames, W.J., Bilheux, H., Tremsin, A.S., Lowe, L.E., Babu, S.S., Mater. Sci. Technol. 31 (8), 931 (2015).CrossRefGoogle Scholar
Zhou, W., List, F.A., Duty, C.E., Babu, S.S., Metall. Mater. Trans. B 46 (3), 1542 (2015).Google Scholar
Winkler, R., Schmidt, F.-P., Haselmann, U., Fowlkes, J.D., Lewis, B.B., Kothleitner, G., Rack, P.D., Plank, H., ACS Appl. Mater. Interfaces 9 (9), 8233 (2017).Google Scholar
Jesse, S., He, Q., Lupini, A.R., Leonard, D.N., Oxley, M.P., Ovchinnikov, O., Unocic, R.R., Tselev, A., Fuentes-Cabrera, M., Sumpter, B.G., Pennycook, S.J., Kalinin, S.V., Borisevich, A.Y., Small 11 (44), 5895 (2015).CrossRefGoogle Scholar
Yang, X.X., Wang, R.H., Yan, H.P., Zhang, Z., Mater. Sci. Eng. B 49 (1), 5 (1997).CrossRefGoogle Scholar
Birtcher, R.C., Philos. Mag. B 73 (4), 677 (1996).Google Scholar
Wang, Z.L., Itoh, N., Matsunami, N., Zhao, Q.T., Nucl. Instrum. Methods Phys. Res. B 100 (4), 493 (1995).Google Scholar
Li, Z.C., Zhang, H., Xu, Y.B., Mater. Sci. Semicond. Process. 7 (1–2), 19 (2004).Google Scholar
Xu, Z.W., Ngan, A.H.W., Philos. Mag. Lett. 84 (11), 719 (2004).Google Scholar
Lulli, G., Merli, P.G., Phys. Rev. B Condens. Matter 47 (21), 14023 (1993).Google Scholar
Jiang, N., Rep. Prog. Phys. 79 (1), 016501 (2016).Google Scholar
Reimer, L., Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, 2nd ed. (Springer-Verlag, Berlin, Heidelberg, 1989).Google Scholar
Hobbs, L.W., in Quantitative Electron Microscopy, Chapman, J.N., Craven, A.J., Eds. (Scottish Universities Summer School in Physics, Edinburgh, UK, 1984), pp. 399445.Google Scholar
Egerton, R.F., McLeod, R., Wang, F., Malac, M., Ultramicroscopy 110 (8), 991 (2010).Google Scholar
Kabler, M.N., Williams, R.T., Phys. Rev. B Condens. Matter 18 (4), 1948 (1978).CrossRefGoogle Scholar
Hobbs, L.W., Pascucci, M.R., J. Phys. Colloques 41 (C6), C6-237–C6-242 (1980).Google Scholar
Hobbs, L.W., Scanning Microsc. Suppl. 4, 171 (1990).Google Scholar
Humphreys, C., Scanning Microsc. Suppl. 4, 185 (1990).Google Scholar
Cazaux, J., Ultramicroscopy 60 (3), 411 (1995).CrossRefGoogle Scholar
Jiang, N., J. Phys. D Appl. Phys. 46 (30), 305502 (2013).CrossRefGoogle Scholar
Jiang, N., Micron 83, 79 (2016).Google Scholar
Jiang, N., Microelectron. Eng. 168, 41 (2017).Google Scholar
Brown, A.M., Sundararaman, R., Narang, P., Goddard, W.A., Atwater, H.A., Phys. Rev. B Condens. Matter 94 (7), 075120 (2016).Google Scholar
Su, D., Jiang, N., Spence, J.C., He, F., Petuskey, W.T., J. Appl. Phys. 104 (6), 063514 (2008).Google Scholar
Chen, C.L., Furusho, H., Mori, H., Philos. Mag. Lett. 89 (2), 113 (2009).Google Scholar
Jiang, N., Spence, J.C., Ultramicroscopy 111 (7), 860 (2011).Google Scholar
Su, D., Anal. Bioanal. Chem. 374 (4), 732 (2002).Google Scholar
Kaganov, M., Lifshitz, I., Tanatarov, L., Sov. Phys. JETP 4 (2), 173 (1957).Google Scholar
Meftah, A., Costantini, J., Djebara, M., Khalfaoui, N., Stoquert, J., Studer, F., Toulemonde, M., Nucl. Instrum. Methods Phys. Res. B 122 (3), 470 (1997).Google Scholar
Brown, A.M., Sundararaman, R., Narang, P., Schwartzberg, A.M., Goddard, W.A., Atwater, H.A., Phys. Rev. Lett. 118 (8), 087401 (2017).Google Scholar
Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., Studer, F., Trautmann, C., Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 52, 263 (2006).Google Scholar
Zarkadoula, E., Pakarinen, O.H., Xue, H., Zhang, Y., Weber, W.J., Phys. Chem. Chem. Phys. 17 (35), 22538 (2015).Google Scholar
Weber, W.J., Zarkadoula, E., Pakarinen, O.H., Sachan, R., Chisholm, M.F., Liu, P., Xue, H., Jin, K., Zhang, Y., Sci. Rep. 5, 7726 (2015).Google Scholar
Girit, C.O., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.H., Crommie, M.F., Cohen, M.L., Louie, S.G., Zettl, A., Science 323 (5922), 1705 (2009).Google Scholar
Fischbein, M.D., Drndic, M., Appl. Phys. Lett. 93 (11), 113107 (2008).Google Scholar
Song, B., Schneider, G.F., Xu, Q., Pandraud, G., Dekker, C., Zandbergen, H., Nano Lett. 11 (6), 2247 (2011).CrossRefGoogle Scholar
Lin, J., Cretu, O., Zhou, W., Suenaga, K., Prasai, D., Bolotin, K.I., Cuong, N.T., Otani, M., Okada, S., Lupini, A.R., Idrobo, J.-C., Caudel, D., Burger, A., Ghimire, N.J., Yan, J., Mandrus, D.G., Pennycook, S.J., Pantelides, S.T., Nat. Nanotechnol. 9 (6), 436 (2014).Google Scholar
Borisevich, A.Y., Lupini, A.R., Pennycook, S.J., Proc. Natl. Acad. Sci. U.S.A. 103 (9), 3044 (2006).Google Scholar
Zhang, Y., Lian, J., Wang, C.M., Jiang, W., Ewing, R.C., Weber, W.J., Phys. Rev. B Condens. Matter 72 (9), 094112 (2005).Google Scholar
Tran, T.T., Bray, K., Ford, M.J., Toth, M., Aharonovich, I., Nat. Nanotechnol. 11 (1), 37 (2016).Google Scholar