Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T21:05:33.895Z Has data issue: false hasContentIssue false

Atomic Control of the Electronic Structure at Complex Oxide Heterointerfaces

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The following article is based on the Outstanding Young Investigator Award presentation given by Harold Y. Hwang of the University of Tokyo on March 29, 2005, at the Materials Research Society Spring Meeting in San Francisco. Hwang was cited for “innovative work on the physics of transition-metal oxides and the atomic-scale synthesis of complex oxide heterostructures.” Perovskite oxides range from insulators to superconductors and can incorporate magnetism as well as couple to phonon instabilities. The close lattice match between many perovskites raises the possibility of growing epitaxial thin-film heterostructures with different ground states that may compete or interact. The recent development of superconducting Josephson junctions, magnetic tunnel junctions, ferroelectric memory cells, and resistive switching can be considered examples within this new heteroepitaxial family. In this context, Hwang presents his studies of electronic structure at atomically abrupt interfaces grown by pulsed laser deposition. Some issues are generic to all heterointerfaces, such as the stability of dopant profiles and diffusion, interface states and depletion, and interface charge arising from polarity discontinuities. A more unusual issue is the charge structure associated with Mott insulator/band insulator interfaces. The question is, how should one consider the correlated equivalent of band bending? This semiconductor concept is based on the validity of rigid single-particle band diagrams, which are known to be an inadequate description for strongly correlated electrons. In addition to presenting an interesting scientific challenge, this question underlies the attempts to develop new applications of doped Mott insulators in device geometries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1For example, see Tsuda, N.Nasu, K.Fujimori, A. and Siratori, K.Electronic Conduction in Oxides (Springer-Verlag, Berlin, 2000).CrossRefGoogle Scholar
2Dagotto, E.Science 309 (2005) p. 257.CrossRefGoogle Scholar
3Bednorz, J.G. and Mueller, K.A.Z. Phys. B 64 (1986) p. 189.CrossRefGoogle Scholar
4For example, see Eckstein, J.N.Bozovic, I.Klausmeier-Brown, M.E., Virshup, G.F. and Ralls, K.S.MRS Bull. 17 (8) (1992) p. 27.CrossRefGoogle Scholar
5Auciello, O.Scott, J.F. and Ramesh, R.Phys. Today 51 (7) (1998) p. 22.CrossRefGoogle Scholar
6For a review, see Tokura, Y. ed., Colossal Magnetoresistive Oxides (Gordon and Breach, New York, 2000).CrossRefGoogle ScholarPubMed
7For example, see Koinuma, H. ed., “Crystal Engineering of High Tc-Related Oxide Films,” MRS Bull. 19 (9) (1994) p. 21.CrossRefGoogle Scholar
8Weisbuch, C. and Vinter, B.Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, London, 1991).CrossRefGoogle Scholar
9Chambers, S.A. and Yoo, Y.K. eds., “New Materials for Spintronics,” MRS Bull. 28 (10) (2003) p. 706.CrossRefGoogle Scholar
10Klitzing, K.v.Dorda, G. and Pepper, M.Phys. Rev. Lett. 45 (1980) p. 494.CrossRefGoogle Scholar
11Ahn, C.H.Triscone, J.-M. and Mannhart, J.Nature 424 (2004) p. 1015.CrossRefGoogle Scholar
12Chrisey, D.B. and Hubler, G.K., eds., Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994).Google Scholar
13Braun, W.Applied RHEED (Springer, Berlin, 1999).Google Scholar
14Rijnders, G.J.H.M., Koster, G.Blank, D.H.A. and Rogalla, H.Appl. Phys. Lett. 70 (1997) p. 1888.CrossRefGoogle Scholar
15As an example for Tl-based cuprates, see Shimakawa, Y.Kubo, Y.Manako, T. and Igarashi, H.Phys. Rev. B 40 (1989) p. 11400.CrossRefGoogle Scholar
16Gong, W.Yun, H.Ning, Y.B.Greedan, J.E.Datars, W.R. and Stager, C.V.J. Solid State Chem. 90 (1991) p. 320.CrossRefGoogle Scholar
17Hwang, H.Y.Ohtomo, A.Nakagawa, N.Muller, D.A. and Grazul, J.L.Physica E 22 (2004) p. 712.CrossRefGoogle Scholar
18Frederikse, H.P.R.Thurber, W.R. and Hosler, W.R.Phys. Rev. 134 (1964) p. A442.Google Scholar
19Schooley, J.F.Hosler, W.R. and Cohen, M.L.Phys. Rev. Lett. 12 (1964) p. 474.CrossRefGoogle Scholar
20Muller, D.A.Nakagawa, N.Ohtomo, A.Grazul, J.L. and Hwang, H.Y.Nature 430 (2004) p. 657.CrossRefGoogle Scholar
21Tokura, Y.Taguchi, Y.Okada, Y.Fujishima, Y.Arima, T.Kumagai, K. and Iye, Y.Phys. Rev. Lett. 70 (1993) p. 2126.Google Scholar
22Ohtomo, A.Muller, D.A.Grazul, J.L. and Hwang, H.Y.Nature 419 (2002) p. 378.CrossRefGoogle Scholar
23Ohtomo, A.Muller, D.A.Grazul, J.L. and Hwang, H.Y.Appl. Phys. Lett. 80 (2002) p. 3922.Google Scholar
24Hamann, D.R. unpublished.Google Scholar
25For an example of delta-doping in silicon, see Citrin, P.H.Muller, D.A.Gossmann, H.-J., Vanfleet, R. and Northrup, P.A.Phys. Rev. Lett. 83 (1999) p. 3234.Google Scholar
26Okamoto, S. and Millis, A.J.Nature 428 (2004) p. 630.Google Scholar
27See the Nobel Lecture by Herbert Kroemer in Ekspong, G. ed., Nobel Lectures, Physics 1996-2000 (World Scientific, Singapore, 2002).Google Scholar
28Sugiura, M.Uragou, K.Noda, M.Tachiki, M. and Kobayashi, T.Jpn. J. Appl. Phys. 38 (1999) p. 2675.Google Scholar
29Tanaka, H.Zhang, J. and Kawai, T.Phys. Rev. Lett. 88 027204 (2002).CrossRefGoogle Scholar
30Nakagawa, N.Asai, M.Mukunoki, Y.Susaki, T., and Hwang, H.Y.Appl. Phys. Lett. 86 082504 (2005).CrossRefGoogle Scholar
31Baraff, G.A.Appelbaum, J.A. and Hamann, D.R.Phys. Rev. Lett. 38 (1977) p. 237.CrossRefGoogle Scholar
32Harrison, W.A.Kraut, E.A.Waldrop, J.R. and Grant, R.W.Phys. Rev. B 18 (1978) p. 4402.CrossRefGoogle Scholar
33Ohtomo, A. and Hwang, H.Y.Nature 427 (2004) p. 423.Google Scholar
34Klenov, D.O.Schlom, D.G.Li, H. and Stemmer, S.Jpn. J. Appl. Phys. 44 (2005) p. L617.Google Scholar
35Kim, D.-W.Kim, D.-H., Kang, B.-S.Noh, T.W.Lee, D.R. and Lee, K.-B., Appl. Phys. Lett. 74 (1999) p. 2176.CrossRefGoogle Scholar
36Mukunoki, Y.Nakagawa, N.Susaki, T. and Hwang, H.Y.Appl. Phys. Lett. 86 171908 (2005).CrossRefGoogle Scholar