Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T09:16:25.667Z Has data issue: false hasContentIssue false

Beyond bulk single crystals: A data format for all materials structure–property–processing relationships

Published online by Cambridge University Press:  02 August 2016

Kyle Michel
Affiliation:
Citrine Informatics, USA; kyle@citrine.io
Bryce Meredig
Affiliation:
Citrine Informatics, USA; bryce@citrine.io
Get access

Abstract

Methods used in informatics require input data that are in a machine-readable, structured format. Materials data, in particular, can be exceedingly complex, so defining data formats to store any and all materials-related information is a daunting task. In this article, we discuss a hierarchical data structure used for storing materials data called the physical information file (PIF). The PIF is a flexible schema for storing the structure, processing history, and properties of materials, devices, and physical systems. In addition to a general discussion of the schema, we give examples of its use in representing complex materials systems. We also describe open-source tools that have been developed for building and reading files using the PIF schema.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tolle, K.M., Tansley, D.S.W., Hey, A.J.G., Proc. IEEE 99, 1334 (2011).CrossRefGoogle Scholar
Rajan, K., Annu. Rev. Mater. Res. 45, 153 (2015).CrossRefGoogle Scholar
Rajan, K., Mater. Today 8, 38 (2005).CrossRefGoogle Scholar
The R Project for Statistical Computing, https://www.r-project.org.Google Scholar
Scikit-learn: Machine Learning in Python, http://www.scikit-learn.org.Google Scholar
Frantzen, A., Sanders, D., Scheidtmann, J., Simon, U., Maier, W.F., QSAR Comb. Sci. 24, 22 (2005).CrossRefGoogle Scholar
Xu, Y., Yamazaki, M., Villars, P., Jpn. J. Appl. Phys. 50, 11RH02 (2011).CrossRefGoogle Scholar
“Materials Genome Initiative National Science and Technology Council Committee on Technology Subcommittee on the Materials Genome Initiative” (National Science and Technology Council Committee on Technology Subcommittee on the Materials Genome Initiative, Washington, DC, 2014).Google Scholar
Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Ceder, G., Persson, K.A., APL Mater. 1, 011002 (2013).CrossRefGoogle Scholar
Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R.H., Nelson, L.J., Hart, G.L.W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., Levy, O., Comput. Mater. Sci. 58, 227 (2012).CrossRefGoogle Scholar
Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C., JOM 65, 1501 (2013).CrossRefGoogle Scholar
Hall, S.R., McMahon, B., Eds., International Tables for Crystallography Volume G: Definition and Exchange of Crystallographic Data (Springer, Dordrecht, 2005).Google Scholar
Warren, J.A., Boisvert, R.F., Building the Materials Innovation Infrastructure: Data and Standards (NISTIR 7898, National Institute of Standards and Technology, 2012).Google Scholar
Ward, C.H., Warren, J.A., Materials Genome Initiative: Materials Data (NISTIR 8038, National Institute of Standards and Technology, 2015).Google Scholar
National Institute of Standards and Technology, “NIST Materials Data Curation System,” https://mgi.nist.gov/materials-data-curation-system.Google Scholar
Huck, P., Jain, A., Gunter, D., Winston, D., Persson, K., Comput. Sci. Softw. Eng. (2015), available at http://arxiv.org/abs/1510.05024.Google Scholar
Gaultois, M.W., Sparks, T.D., Borg, C.K.H., Seshadri, R., Bonificio, W.D., Clarke, D.R., Chem. Mater. 25, 2911 (2013).CrossRefGoogle Scholar
Zhang, S., Sun, N., He, X., Lu, X., Zhang, X., J. Phys. Chem. Ref. Data 35, 1475 (2006).CrossRefGoogle Scholar