Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T13:53:36.321Z Has data issue: false hasContentIssue false

Bottom-up grown nanowire quantum devices

Published online by Cambridge University Press:  09 May 2019

Erik Bakkers*
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, The Netherlands; e.p.a.m.bakkers@tue.nl
Get access

Abstract

A quantum computer can outperform classical computers for certain tasks. The general challenge to realize a quantum computer is to solve decoherence, which is due to coupling of a quantum state with the local environment. One possible way to overcome decoherence is to use a topological quantum state. Topologically protected states are expected to have long coherence times. In a topological quantum computer, the information is carried by nonlocal Majorana states. Such states can be engineered in a semiconductor nanowire, which has strong spin–orbit interactions, coupled to a superconductor. The first signatures of Majorana states have been observed recently. In order to substantiate the existence of Majorana states and use them as qubits, an exchange—or braiding—operation of these states has to be performed. The current challenge is to improve the quality of the materials and interfaces. Recent progress toward improved Majorana signals using materials science advances is reviewed in this article.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The following article is based on a Symposium X (Frontiers of Materials Research) presentation given at the 2018 MRS Fall Meeting in Boston, Mass.

References

Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L., Nature 464, 45 (2010).CrossRefGoogle Scholar
Nadj-Perge, S., Frolov, S.M., Bakkers, E.P.A.M., Kouwenhoven, L.P., Nature 468, 1084 (2010).CrossRefGoogle Scholar
van den Berg, J.W.G., Nadj-Perge, S., Pribiag, V.S., Plissard, S.R., Bakkers, E.P.A.M., Frolov, S.M., Kouwenhoven, L.P., Phys. Rev. Lett. 110, 066806 (2013).CrossRefGoogle Scholar
Stern, A., Lindner, N.H., Science 339, 1179 (2013).CrossRefGoogle Scholar
Majorana, E., Nuovo Cim . 14, 171 (1937).CrossRefGoogle Scholar
Fu, L., Kane, C.L., Phys. Rev. Lett. 100, 096407 (2008).CrossRefGoogle Scholar
Lutchyn, R.M., Sau, J.D., Das Sarma, S., Phys. Rev. Lett. 105, 077001 (2010).CrossRefGoogle Scholar
Oreg, Y., Refael, G., von Oppen, F., Phys. Rev. Lett. 105, 177002 (2010).CrossRefGoogle Scholar
Lutchyn, R.M., Bakkers, E.P.A.M., Kouwenhoven, L.P., Krogstrup, P., Marcus, C.M., Oreg, Y., Nat. Rev. Mater. 3, 52 (2018).CrossRefGoogle Scholar
Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P., Science 336, 1003 (2012).CrossRefGoogle Scholar
Das, A., Ronen, Y., Most, Y., Oreg, Y., Heiblum, M., Shtrikman, H., Nat. Phys. 8, 887 (2012).CrossRefGoogle Scholar
Rokhinson, L.P., Liu, X., Furdyna, J.K., Nat. Phys. 8, 795 (2012).CrossRefGoogle Scholar
Nadj-Perge, S., Drozdov, I.K., Li, J., Chen, H., Jeon, S., Seo, J., MacDonald, A.H., Bernevig, B.A., Yazdani, A., Science 346, 602 (2014).CrossRefGoogle Scholar
Deng, M.T., Vaitiekėnas, S., Hansen, E.B., Danon, J., Leijnse, M., Flensberg, K., Nygård, J., Krogstrup, P., Marcus, C.M., Science 354, 1557 (2016).CrossRefGoogle Scholar
Wang, D., Kong, L., Fan, P., Chen, H., Zhu, S., Liu, W., Cao, L., Sun, Y., Du, S., Schneeloch, J., Zhong, R., Gu, G., Fu, L., Ding, H., Gao, H.J., Science 362, 333 (2018).CrossRefGoogle Scholar
Gül, Ö., Zhang, H., Bommer, J.D.S., De Moor, M.W.A., Car, D., Plissard, S.R., Bakkers, E.P.A.M., Geresdi, A., Watanabe, K., Taniguchi, T., Kouwenhoven, L.P., Nat. Nanotechnol. 13, 192 (2018).CrossRefGoogle Scholar
Liu, C.X., Sau, J.D., Stanescu, T.D., Das Sarma, S., Phys. Rev. B 96, 075161 (2017).CrossRefGoogle Scholar
Liu, C.X., Sau, J.D., Das Sarma, S., Phys. Rev. B. 95, 054502 (2017).CrossRefGoogle Scholar
Zhang, H., Gül, Ö., Conesa-Boj, S., Nowak, M.P., Wimmer, M., Zuo, K., Mourik, V., De Vries, F.K., Van Veen, J., De Moor, M.W.A., Bommer, J.D.S., Van Woerkom, D.J., Car, D., Plissard, S.R., Bakkers, E.P.A.M., Quintero-Pérez, M., Cassidy, M.C., Koelling, S., Goswami, S., Watanabe, K., Taniguchi, T., Kouwenhoven, L.P., Nat. Commun. 8 (2017), doi:10.1038/ncomms16025.Google Scholar
Karzig, T., Knapp, C., Lutchyn, R.M., Bonderson, P., Hastings, M.B., Nayak, C., Alicea, J., Flensberg, K., Plugge, S., Oreg, Y., Marcus, C.M., Freedman, M.H., Phys. Rev. B 95, 235305 (2017).CrossRefGoogle Scholar
Alicea, J., Oreg, Y., Refael, G., von Oppen, F., Fisher, M.P.A., Nat. Phys. 7, 6 (2011).CrossRefGoogle Scholar
Gazibegovic, S., Car, D., Zhang, H., Balk, S.C., Logan, J.A., De Moor, M.W.A., Cassidy, M.C., Schmits, R., Xu, D., Wang, G., Krogstrup, P., Op Het Veld, R.L.M., Zuo, K., Vos, Y., Shen, J., Bouman, D., Shojaei, B., Pennachio, D., Lee, J.S., Van Veldhoven, P.J., Koelling, S., Verheijen, M.A., Kouwenhoven, L.P., Palmstrøm, C.J., Bakkers, E.P.A.M., Nature 548, 434 (2017).CrossRefGoogle Scholar
Plissard, S.R., Slapak, D.R., Verheijen, M.A., Hocevar, M., Immink, G.W.G., Van Weperen, I., Nadj-Perge, S., Frolov, S.M., Kouwenhoven, L.P., Bakkers, E.P.A.M., Nano Lett . 12, 1794 (2012).CrossRefGoogle Scholar
Gül, Ö., Van Woerkom, D.J., Van Weperen, I., Car, D., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P., Nanotechnology 26, 215202 (2015).CrossRefGoogle Scholar
Kammhuber, J., Cassidy, M.C., Zhang, H., Gül, Ö., Pei, F., De Moor, M.W.A., Nijholt, B., Watanabe, K., Taniguchi, T., Car, D., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P., Nano Lett . 16, 3482 (2016).CrossRefGoogle Scholar
Krogstrup, P., Ziino, N.L.B., Chang, W., Albrecht, S.M., Madsen, M.H., Johnson, E., Nygård, J., Marcus, C.M., Jespersen, T.S., Nat. Mater. 14, 400 (2015).CrossRefGoogle Scholar
Chang, W., Albrecht, S.M., Jespersen, T.S., Kuemmeth, F., Krogstrup, P., Nygård, J., Marcus, C.M., Nat. Nanotechnol. 10, 232 (2015).CrossRefGoogle Scholar
Zhang, H., Liu, C.X., Gazibegovic, S., Xu, D., Logan, J.A., Wang, G., Van Loo, N., Bommer, J.D.S., De Moor, M.W.A., Car, D., Op het Veld, R.L.M., Van Veldhoven, P.J., Koelling, S., Verheijen, M.A., Pendharkar, M., Pennachio, D.J., Shojaei, B., Lee, J.S., Palmstrøm, C.J., Bakkers, E.P.A.M., Das Sarma, S., Kouwenhoven, L.P., Nature 556, 74 (2018).CrossRefGoogle Scholar
Car, D., Wang, J., Verheijen, M.A., Bakkers, E.P.A.M., Plissard, S.R., Adv. Mater. 26, 4875 (2014).CrossRefGoogle Scholar
Fadaly, E.M.T., Zhang, H., Conesa-Boj, S., Car, D., Gül, Ö., Plissard, S.R., Op het Veld, R.L.M., Kölling, S., Kouwenhoven, L.P., Bakkers, E.P.A.M., Nano Lett . 17, 6511 (2017).CrossRefGoogle Scholar
Vaitiekenas, S., Whiticar, A.M., Deng, M.T., Krizek, F., Sestoft, J.E., Palmstrøm, C.J., Marti-Sanchez, S., Arbiol, J., Krogstrup, P., Casparis, L., Marcus, C.M., Phys. Rev. Lett. 121, 147701 (2018).CrossRefGoogle Scholar
Aseev, P., Fursina, A., Boekhout, F., Krizek, F., Sestoft, J.E., Borsoi, F., Heedt, S., Wang, G., Binci, L., Martí-Sánchez, S., Swoboda, T., Koops, R., Uccelli, E., Arbiol, J., Krogstrup, P., Kouwenhoven, L.P., Caroff, P., Nano Lett . 19, 218 (2019).CrossRefGoogle Scholar