Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T11:16:22.657Z Has data issue: false hasContentIssue false

Breaking time reversal symmetry in topological insulators

Published online by Cambridge University Press:  15 October 2014

Cui-Zu Chang
Affiliation:
Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, USA; czchang@mit.edu
Peng Wei
Affiliation:
Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, USA; pwei@mit.edu
Jagadeesh S. Moodera
Affiliation:
Francis Bitter Magnet Laboratory and Department of Physics, Massachusetts Institute of Technology, USA; moodera@mit.edu
Get access

Abstract

A wide class of materials that were discovered to carry a topologically protected phase order has led to a highly active area of research called topological insulators (TIs). This phenomenon has radically changed our thinking because of the robust quantum coherent behavior showing two-dimensional Dirac-type metallic surface states (SSs) and simultaneously insulating bulk states. The Dirac SSs are induced by the strong spin–orbit coupling as well as protected by time reversal symmetry (TRS). Breaking TRS in a TI with ferromagnetic perturbation can lead to many exotic quantum phenomena, such as the quantum anomalous Hall effect, topological magnetoelectric effect, as well as image magnetic monopole. This article presents an overview of the current status of TRS breaking in TIs and outlines the prospects for future studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hasan, M.Z., Kane, C.L., Rev. Mod. Phys. 82, 3045 (2010).Google Scholar
Qi, X.L., Zhang, S.C., Rev. Mod. Phys. 83, 1057 (2011).Google Scholar
Moore, J.E., Nature 464, 194 (2010).Google Scholar
Zhang, H.J., Liu, C.X., Qi, X.L., Dai, X., Fang, Z., Zhang, S.C., Nat. Phys. 5, 438 (2009).Google Scholar
Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y.S., Cava, R.J., Hasan, M.Z., Nat. Phys. 5, 398 (2009).Google Scholar
Chen, Y.L., Analytis, J.G., Chu, J.H., Liu, Z.K., Mo, S.K., Qi, X.L., Zhang, H.J., Lu, D.H., Dai, X., Fang, Z., Zhang, S.C., Fisher, I.R., Hussain, Z., Shen, Z.X., Science 325, 178 (2009).Google Scholar
Qi, X.L., Hughes, T.L., Zhang, S.C., Phys. Rev. B: Condens. Matter 78, 195424 (2008).Google Scholar
Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., Zhang, S.-C.. Phys. Rev. Lett. 101, 146802 (2008).Google Scholar
Yu, R., Zhang, W., Zhang, H.J., Zhang, S.C., Dai, X., Fang, Z., Science 329, 61 (2010).Google Scholar
Essin, A.M., Moore, J.E., Vanderbilt, D., Phys. Rev. Lett. 102, 146805 (2009).Google Scholar
Qi, X.L., Li, R., Zang, J., Zhang, S.C., Science 323, 1184 (2009).CrossRefGoogle Scholar
Ohno, H., Chiba, D., Matsukura, F., Omiya, T., Abe, E., Dietl, T., Ohno, Y., Ohtani, K., Nature 408, 944 (2000).CrossRefGoogle Scholar
Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D., Science 287, 1019 (2000).Google Scholar
Dietl, T., Nat. Mater. 9, 965 (2010).Google Scholar
Xu, S.Y., Neupane, M., Liu, C., Zhang, D., Richardella, A., Wray, L.A., Alidoust, N., Leandersson, M., Balasubramanian, T., Barriga, J.S., Radar, O., Landolt, G., Slomski, B., Dil, J.H., Osterwalder, J., Chang, T., Jeng, H., Lin, H., Bansil, A., Samarth, N., Hasan, M.Z., Nat. Phys. 8, 616 (2012).CrossRefGoogle Scholar
Chen, Y.L., Chu, J.-H., Analytis, J.G., Liu, Z.K., Igarashi, K., Kuo, H.H., Qi, X.L., Mo, S.K., Moore, R.G., Lu, D.H., Hashimoto, M., Sasagawa, T., Zhang, S.C., Fisher, I.R., Hussain, Z., Shen, Z.X., Science 329, 659 (2010).Google Scholar
Haazen, P.P.J., Laloë, J.-B., Nummy, T.J., Swagten, H.J.M., Jarillo-Herrero, P., Heiman, D., Moodera, J.S., Appl. Phys. Lett. 100, 082404 (2012).CrossRefGoogle Scholar
Chang, C.Z., Tang, P., Wang, Y.L., Feng, X., Li, K., Zhang, Z., Wang, Y., Wang, L., Chen, X., Liu, C.X., Duan, W., He, K., Ma, X., Xue, Q.K., Phys. Rev. Lett. 112, 056801 (2014).Google Scholar
Liu, M., Zhang, J., Chang, C.Z., Zhang, Z., Feng, X., Li, K., He, K., Wang, L., Chen, X., Dai, X., Fang, Z., Xue, Q.K., Ma, X., Wang, Y., Phys. Rev. Lett. 108, 036805 (2012).Google Scholar
Hor, Y.S., Roushan, P., Beidenkopf, H., Seo, J., Qu, D., Checkelsky, J.G., Wray, L.A., Hsieh, D., Xia, Y., Xu, S.-Y., Qian, D., Hasan, M.Z., Ong, N.P., Yazdani, A., Cava, R.J., Phys. Rev. B: Condens. Matter 81, 195203 (2010).Google Scholar
Zhang, J., Chang, C.Z., Tang, P., Zhang, Z., Feng, X., Li, K., Wang, L., Chen, X., Liu, C.X., Duan, W., He, K., Xue, Q.K., Ma, X., Wang, Y., Science 339, 1582 (2013).Google Scholar
Chang, C.Z., Zhang, J., Liu, M., Zhang, Z., Feng, X., Li, K., Wang, L., Chen, X., Fang, Z., Qi, X., Zhang, S.C., Wang, Y., He, K., Ma, X., Xue, Q.K., Adv. Mater. 25, 1065 (2013).Google Scholar
Chang, C.Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei, P., Wang, L., Ji, Z., Feng, Y., Ji, S., Chen, X., Jia, J., Dai, X., Fang, Z., Zhang, S.C., He, K., Wang, Y., Lv, L., Ma, X., Xue, Q.K., Science 340, 167 (2013).Google Scholar
Liu, Q., Liu, C.-X., Xu, C., Qi, X.-L., Zhang, S.-C., Phys. Rev. Lett. 102, 156603 (2009).Google Scholar
Vobornik, I., Manju, U., Fujii, J., Borgatti, F., Torelli, P., Krizmancic, D., Hor, Y.S., Cava, R.J., Panaccione, G., Nano Lett. 11, 4079 (2011).Google Scholar
He, H.-T., Wang, G., Zhang, T., Sou, I.-K., Wong, G.K.L., Wang, J.-N., Lu, H.-Z., Shen, S.-Q., Zhang, F.-C., Phys. Rev. Lett. 106, 166805 (2011).Google Scholar
Wei, P., Katmis, F., Assaf, B.A., Steinberg, H., Jarillo-Herrero, P., Heiman, D., Moodera, J.S., Phys. Rev. Lett. 110, 186807 (2013).Google Scholar
Yang, Q.I., Dolev, M., Zhang, L., Zhao, J., Fried, A.D., Schemm, E., Liu, M., Palevski, A., Marshall, A.F., Risbud, S.H., Kapitulnik, A., Phys. Rev. B: Condens. Matter 88, 081407 (2013).Google Scholar
Kandala, A., Richardella, A., Rench, D.W., Zhang, D.M., Flanagan, T.C., Samarth, N., Appl. Phys. Lett. 103, 202409 (2013).Google Scholar
Fu, L., Kane, C.L., Phys. Rev. Lett. 100, 096407 (2008).Google Scholar
Akhmerov, A.R., Nilsson, J., Beenakker, C.W.J., Phys. Rev. Lett. 102, 216404 (2009).Google Scholar
Hao, X., Moodera, J.S., Meservey, R., Phys. Rev. Lett. 67, 1342 (1991).Google Scholar
Moodera, J.S., Santos, T.S., Nagahama, T., J. Phys. Condens. Matter 19, 165202 (2007).Google Scholar
Freeman, A.J., Wu, R., J. Magn. Magn. Mater. 100, 497 (1991).CrossRefGoogle Scholar
Chappert, C., Bruno, P., J. Appl. Phys. 64, 5736 (1988).CrossRefGoogle Scholar
Shan, Z.S., Sellmyer, D.J., Phys. Rev. B: Condens. Matter 42, 10433 (1990).Google Scholar
Liu, X., Hsu, H.C., Liu, C.X., Phys. Rev. Lett. 111, 086802 (2013).Google Scholar
Chang, C.Z., He, K., Wang, L., Ma, X., Liu, M., Zhang, Z., Chen, X., Wang, Y., Xue, Q.K., SPIN 1, 21 (2011).Google Scholar
Jiang, Y.P., Sun, Y.Y., Chen, M., Wang, Y.L., Li, Z., Song, C.L., He, K., Wang, L.L., Chen, X., Xue, Q.K., Ma, X.C., Zhang, S.B., Phys. Rev. Lett. 108, 066809 (2012).CrossRefGoogle Scholar
Zhang, J.S., Chang, C.Z., Zhang, Z.C., Wen, J., Feng, X., Li, K., Liu, M.H., He, K., Wang, L.L., Chen, X., Xue, Q.K., Ma, X.C., Wang, Y.Y., Nat. Commun. 2, 574 (2011).Google Scholar