Article contents
Can We Build a Large-Scale Quantum Computer Using Semiconductor Materials?
Published online by Cambridge University Press: 31 January 2011
Abstract
The following article is based on the Symposium X presentation given by Bruce E. Kane (University of Maryland) at the 2004 Materials Research Society Spring Meeting in San Francisco. Quantum computing has the potential to revolutionize our ability to solve certain classes of difficult problems. A quantum computer is able to manipulate individual two-level quantum states (“qubits”) in the same way that a conventional computer processes binary ones and zeroes. Here, Kane discusses some of the most promising proposals for quantum computing, in which the qubit is associated with single-electron spins in semiconductors. While current research is focused on devices at the one- and two-qubit level, there is hope that cross-fertilization with advancing conventional computer technology will enable the eventual development of a large-scale (thousands of qubits) semiconductor quantum computer.The author focuses on materials issues that will need to be surmounted if large-scale quantum computing is to be realizable. He argues in particular that inherent fluctuations in doped semiconductors will severely limit scaling and that scalable quantum computing in semiconductors may only be possible at the end of the road of Moore's law scaling, when devices are engineered and fabricated at the atomic level.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
- 17
- Cited by