Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T11:50:13.465Z Has data issue: false hasContentIssue false

Carbon Nanotube Photophysics

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In single-walled carbon nanotubes (SWNTs), their electronic and vibrational structure as well as their charge-carrier dynamics are crucial for potential ultrasmall optical device applications. SWNT properties have now been obtained from optical absorption and time-resolved photoemission and, at the single-nanotube level, by resonance Raman scattering and photoluminescence studies. This article presents an overview of SWNT photophysics, discussing important findings for the characterization of carbon nanotube properties and directions for future research and potential applications. The unique optical properties observed in SWNTs are due to the one-dimensional confinement of electronic states, resulting in van Hove singularities in the nanotube density of states. Optical measurements of phonons, charge-carrier dynamics, and the electronic transition energy van Hove singularities are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

References

1. Misewich, J.A., Martel, R., Ph. Avouris, Tsang, J.C., Heinze, S., and Tersoff, J., Science 300 (2003) p. 783.CrossRefGoogle Scholar
2. Freitag, M., Martin, Y., Misewich, J.A., Martel, R., and Avouris, Ph., Nano Lett. 3 (2003) p. 1067.CrossRefGoogle Scholar
3. Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).CrossRefGoogle Scholar
4. Dresselhaus, M.S., Dresselhaus, G., and Avouris, Ph., Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer-Verlag, Berlin, 2001).CrossRefGoogle Scholar
5. Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., and Dresselhaus, M.S., Phys. Rev. Lett. 86 (2001) p. 1118.CrossRefGoogle Scholar
6. Samsonidze, Ge.G., Saito, R., Jorio, A., Pimenta, M.A., Filho, A.G. Souza, Grüneis, A., Dresselhaus, G., and Dresselhaus, M.S., J. Nanosci. Nanotech. 3 (2003) p. 431.CrossRefGoogle Scholar
7. Jorio, A., Pimenta, M.A., Filho, A.G. Souza, Samsonidze, Ge.G., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Phys. Rev. Letters 90 107403 (2003).CrossRefGoogle Scholar
8. Samsonidze, Ge.G., Grüneis, A., Saito, R., Jorio, A., Filho, A.G. Souza, Dresselhaus, G., and Dresselhaus, M.S., Phys. Rev. B (2004) in press.Google Scholar
9. Jorio, A., Pimenta, M.A., A.G. Souza Filho, Saito, R., Dresselhaus, G., and Dresselhaus, M.S., New J. Phys. 5 (2003) p. 139.CrossRefGoogle Scholar
10. Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Filho, A.G. Souza, Samsonidze, Ge.G., and Saito, R., J. Nanosci. Nanotech. 3 (2003) p. 19.CrossRefGoogle Scholar
11. Filho, A.G. Souza, Jorio, A., Samsonidze, Ge.G., Dresselhaus, G., Saito, R., and Dresselhaus, M.S., Nanotechnology 14 (2003) p. 1130.Google Scholar
12. O'Connell, M.J., Bachilo, S.M., Huffman, X.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J., Hauge, R.H., Weisman, R.B., and Smalley, R.E., Science 297 (2002) p. 593.CrossRefGoogle Scholar
13. Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E., and Weisman, R.B., Science 298 (2002) p. 2361.CrossRefGoogle Scholar
14. Hagen, A. and Hertel, T., Nano Lett. 3 (2003) p. 383.Google Scholar
15. Weisman, R.B. and Bachilo, S.M., Nano Lett. 3 (2003) p. 1235.CrossRefGoogle Scholar
16. Filho, A.G. Souza, Chou, S.G., Samsonidze, Ge.G., Dresselhaus, G., Dresselhaus, M.S., An, L., Liu, J., Swan, A.K., Unlu, M.S., Goldberg, B.B., Jorio, A., Gruneis, A., and Saito, R., Phys. Rev. B (2004) in press.Google Scholar
17. Kuzmany, H., Plank, W., Hulman, M., Kramberger, C., Gruneis, A., Pichler, T., Peterlik, H., Kataura, H., and Achiba, Y., Eur. Phys. J. B 22 (2001) p. 307.CrossRefGoogle Scholar
18. Kurti, J., Zolyomi, V., Kertesz, M., and Guangyu, S., New J. Phys. 5 (2003) p. 125.Google Scholar
19. Sen, R., Rickard, S. M., Itkis, M. E., and Haddon, R.C., Chem. Mater. 15 (2003) p. 4273.CrossRefGoogle Scholar
20. Hertel, T. and Moos, G., Chem. Phys. Lett. 320 (2000) p. 359.CrossRefGoogle Scholar
21. Hertel, T. and Moos, G., Phys. Rev. Lett. 84 (2000) p. 5502.Google Scholar
22. Moos, G., Fasel, R., and Hertel, T., J. Nanosci. Nanotechnol. 3 (2003) p. 145.CrossRefGoogle Scholar
23. Reich, S., Maultzsch, J., and Thomsen, C., Phys. Rev. B 66 035412 (2002).Google Scholar
24. Hartschuh, A., Pedrosa, H.N., Novotny, L., and Krauss, T.D., Science 301 (2003) p. 1354.Google Scholar
25. Lefebvre, J., Homma, Y., and Finnie, P., Phys. Rev. Lett. 90 217401 (2003).CrossRefGoogle Scholar