Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T11:19:46.229Z Has data issue: false hasContentIssue false

Carbon nanotubes for high-performance logic

Published online by Cambridge University Press:  14 August 2014

Zhihong Chen
Affiliation:
Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, USA; zhchen@purdue.edu
H.-S. Philip Wong
Affiliation:
Stanford University, USA; hspwong@stanford.edu
Subhasish Mitra
Affiliation:
Stanford University, USA; subh@stanford.edu
Ageeth Bol
Affiliation:
Eindhoven University of Technology, The Netherlands; a.a.bol@tue.nl
Lianmao Peng
Affiliation:
Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, China; lmpeng@pku.edu.cn
Gage Hills
Affiliation:
Stanford University, USA; ghills@stanford.edu
Nick Thissen
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, The Netherlands; n.f.w.thissen@tue.nl
Get access

Abstract

Single-wall carbon nanotubes (CNTs) were discovered in 1993 and have been an area of intense research since then. They offer the right dimensions to explore material science and physical chemistry at the nanoscale and are the perfect system to study low-dimensional physics and transport. In the past decade, more attention has been shifted toward making use of this unique nanomaterial in real-world applications. In this article, we focus on potential applications of CNTs in the high-performance logic computing area—the main component of the semiconductor industry. We discuss the key challenges for nanotubes to replace silicon in integrated circuits and review progress made in recent years on the material, device, and circuit integration development of CNT technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avouris, P., Chen, Z., Perebeinos, V., Nat. Nanotechnol. 2 (10), 605 (2007).CrossRefGoogle Scholar
Appenzeller, J., Lin, Y.M., Knoch, J., Chen, Z.H., Avouris, P., IEEE Trans. Electron Devices 52, 2568 (2005).CrossRefGoogle Scholar
Chen, Z., Appenzeller, J., Knoch, J., Lin, Y., Avouris, P., Nano Lett. 5, 1497 (2005).CrossRefGoogle Scholar
Xiao, J., Dunham, S., Liu, P., Zhang, Y., Kocabas, C., Moh, L., Huang, Y., Hwang, K.-C., Lu, C., Huang, W., Rogers, J.A., Nano Lett. 9 (12), 4311 (2009).CrossRefGoogle Scholar
Ibrahim, I., Bachmatiuk, A., Warner, J.H., Büchner, B., Cuniberti, G., Rümmeli, M.H., Small 8 (13), 1973 (2012).CrossRefGoogle Scholar
Hong, S.W., Banks, T., Rogers, J.A., Adv. Mater. 22 (16), 1826 (2010).CrossRefGoogle Scholar
Ding, L., Yuan, D., Liu, J., J. Am. Chem. Soc. 130 (16), 5428 (2008).CrossRefGoogle Scholar
Kocabas, C., Kang, S.J., Ozel, T., Shim, M., Rogers, J.A., J. Phys. Chem. C 111 (48), 17879 (2007).CrossRefGoogle Scholar
Patil, N., thesis, “Design and Fabrication of Imperfection-Immune Carbon Nanotube Digital VLSI Circuits,” Stanford University, CA (2010).CrossRefGoogle Scholar
Zhang, J., Member, S., Lin, A., Patil, N., Wei, H., Wei, L., Wong, H.-S.P., Mitra, S., IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31 (4), 453 (2012).CrossRefGoogle Scholar
Patil, N., Lin, A., Myers, E.R., Wong, H.-S.P., Mitra, S., Proc. Symp. VLSI Technol. 205 (2008).Google Scholar
Shulaker, M.M., Wei, H., Patil, N., Provine, J., Chen, H., Wong, H.-S.P., Mitra, S., Nano Lett. 11, 1881 (2011).CrossRefGoogle Scholar
Patil, N., Lin, A., Wong, H.-S.P., Mitra, S., IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27 (10), 1725 (2008).CrossRefGoogle Scholar
Patil, N., Deng, J., Wong, H.-S.P., Mitra, S., Proc. 44th Annu. Conf. Des. Autom.—DAC ’07, 958 (2007).Google Scholar
Bobba, S., Pullini, A., Atienza, D., De Micheli, G., 2009 Des. Autom. Test Eur. Conf. Exhib. 1, 616 (2009).Google Scholar
Ding, L., Tselev, A., Wang, J., Yuan, D., Chu, H., McNicholas, T.P., Li, Y., Liu, J., Nano Lett. 9 (2), 800 (2009).CrossRefGoogle Scholar
Parker, J., Beasley, C., Lin, A., Chen, H.-Y., Philip Wong, H.-S., Carbon N.Y. 50 (14), 5093 (2012).CrossRefGoogle Scholar
Zhou, W., Zhan, S., Ding, L., Liu, J., J. Am. Chem. Soc. 134 (34), 14019 (2012).CrossRefGoogle Scholar
Zhang, J., Patil, N.P., Mitra, S., IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28 (9), 1307 (2009).CrossRefGoogle Scholar
Patil, N., Lin, A., Zhang, J., Anderson, K., Wong, H.-S.P., Mitra, S., 2009 IEEE Int. Electron Devices Mtg. 573 (2009).Google Scholar
Jin, S.H., Dunham, S.N., Song, J., Xie, X., Kim, J.-H., Lu, C., Islam, A., Du, F., Kim, J., Felts, J., Li, Y., Xiong, F., Wahab, M.A., Menon, M., Cho, E., Grosse, K.L., Lee, D.J., Chung, H.U., Pop, E., Alam, M.A., King, W.P., Huang, Y., Rogers, J.A., Nat. Nanotechnol. 8 (5), 347 (2013).CrossRefGoogle Scholar
Heller, D.A., Mayrhofer, R.M., Baik, S., Grinkova, Y.V., Usrey, M.L., Strano, M.S., J. Am. Chem. Soc. 126 (44), 14567 (2004).CrossRefGoogle Scholar
Farkas, E., Anderson, M.E., Chen, Z., Rinzler, A.G., Chem. Phys. Lett. 363 (1–2), 111 (2002).CrossRefGoogle Scholar
Duesberg, G.S., Muster, J., Krstic, V., Burghard, M., Roth, S., Appl. Phys. 119 (1998), 117 (2000).Google Scholar
Bauer, B.J., Fagan, J.A., Hobbie, E.K., Chun, J., Bajpai, V., J. Phys. Chem. C 112 (6), 1842 (2008).CrossRefGoogle Scholar
Tulevski, G.S., Franklin, A.D., Afzali, A., ACS Nano 7 (4), 2971 (2013).CrossRefGoogle Scholar
Chen, Z., Du, X., Du, M.-H., Rancken, C.D., Cheng, H.-P., Rinzler, A.G., Nano Lett. 3 (9), 1245 (2003).CrossRefGoogle Scholar
Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I., Hersam, M.C., Nat. Nanotechnol. 1 (1), 60 (2006).CrossRefGoogle Scholar
Doorn, S.K., Strano, M.S., O’Connell, M.J., Haroz, E.H., Rialon, K.L., Hauge, R.H., Smalley, R.E., J. Phys. Chem. B 107 (25), 6063 (2003).CrossRefGoogle Scholar
Park, H., Afzali, A., Han, S.-J., Tulevski, G.S., Franklin, A.D., Tersoff, J., Hannon, J.B., Haensch, W., Nat. Nanotechnol. 7 (12), 787 (2012).CrossRefGoogle Scholar
Javey, A., Guo, J., Farmer, D.B., Wang, Q., Wang, D., Gordon, R.G., Lundstrom, M., Dai, H., Nano Lett. 4 (3), 447 (2004).CrossRefGoogle Scholar
Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H., Nature 424, 654 (2003).CrossRefGoogle Scholar
Zhang, Z., Liang, X., Wang, S., Yao, K., Hu, Y., Zhu, Y., Chen, Q., Zhou, W., Li, Y., Yao, Y., Zhang, J., Peng, L.-M., Nano Lett. 7 (12), 3603 (2007).CrossRefGoogle Scholar
Ding, L., Wang, S., Zhang, Z., Zeng, Q., Wang, Z., Pei, T., Yang, L., Liang, X., Shen, J., Chen, Q., Cui, R., Li, Y., Peng, L., Nano Lett. 9 (12), 4209 (2009).CrossRefGoogle Scholar
Franklin, A.D., Chen, Z., Nat. Nanotechnol. 5 (12), 858 (2010).CrossRefGoogle Scholar
Wang, Z., Xu, H., Zhang, Z., Wang, S., Ding, L., Zeng, Q., Yang, L., Pei, T., Liang, X., Gao, M., Peng, L.-M., Nano Lett. 10 (6), 2024 (2010).CrossRefGoogle Scholar
Addou, R., Dahal, A., Batzill, M., Nat. Nanotechnol. 8 (1), 41 (2013).CrossRefGoogle Scholar
Wang, L., Chen, X., Wang, Y., Wu, Z., Li, W., Han, Y., Zhang, M., He, Y., Zhu, C., Fung, K.K., Wang, N., Nanoscale 5 (3), 1116 (2013).CrossRefGoogle ScholarPubMed
Farmer, D.B., Gordon, R.G., Nano Lett. 6, 699 (2006).CrossRefGoogle Scholar
Chen, Z., Farmer, D., Xu, S., Gordon, R., Avouris, P., Appenzeller, J., IEEE Electron Devices Lett. 29 (2), 183 (2008).CrossRefGoogle Scholar
Franklin, A.D., Koswatta, S.O., Farmer, D.B., Smith, J.T., Gignac, L., Breslin, C.M., Han, S.-J., Tulevski, G.S., Miyazoe, H., Haensch, W., Tersoff, J., Nano Lett. 13 (6), 2490 (2013).CrossRefGoogle Scholar
Laudon, J., ACM SIGARCH Comput. Archit. News 33 (4), 5 (2005).CrossRefGoogle Scholar
Rivoire, S., Shah, M.A., Ranganathan, P., Kozyrakis, C., Proc. 2007 ACM SIGMOD Int. Conf. Manage. Data 365 (2007).Google Scholar
Ding, L., Liang, S., Pei, T., Zhang, Z., Wang, S., Zhou, W., Liu, J., Peng, L.-M., Appl. Phys. Lett. 100 (26), 263116 (2012).CrossRefGoogle Scholar
Deng, J., Wong, H.-S.P., IEEE Trans. Electron Devices 54 (12), 3186 (2007).CrossRefGoogle Scholar
Deng, J., Wong, H.-S.P., 54 (12), 3195 (2007).CrossRefGoogle Scholar
Wei, L., Frank, D.J., Chang, L., Wong, H.-S.P., IEEE Electron Devices Mtg. 917 (2009).Google Scholar
Luo, J., Wei, L., Lee, C., Franklin, A.D., Guan, X., Pop, E., Antoniadis, D.A., Wong, H.-S.P., IEEE Trans. Electron Devices 60 (6), 1834 (2013).CrossRefGoogle Scholar
Franklin, A.D., Luisier, M., Han, S.-J., Tulevski, G., Breslin, C.M., Gignac, L., Lundstrom, M.S., Haensch, W., Nano Lett. 12 (2), 758 (2012).CrossRefGoogle Scholar
Zhang, Z., Wang, S., Wang, Z., Ding, L., Pei, T., Hu, Z., Liang, X., Chen, Q., Li, Y., Peng, L., ACS Nano 3 (11), 3781 (2009).CrossRefGoogle Scholar
Shulaker, M.M., Hills, G., Patil, N., Wei, H., Chen, H.-Y., Wong, H.-S.P., Mitra, S., Nature 501 (7468), 526 (2013).CrossRefGoogle Scholar
Lin, A., thesis “Carbon Nanotube Synthesis, Device Fabrication, and Circuit Design for Digital Logic Applications,” Stanford University, CA (2010).Google Scholar
Borkar, S., Proc. 48th Design Automation Conf. 214 (2011).Google Scholar
Batude, P., Vinet, M., Pouydebasque, A., Le Royer, C., Previtali, B., Tabone, C., Hartmann, J.-M., Sanchez, L., Baud, L., Carron, V., Toffoli, A., Allain, F., Mazzocchi, V., Lafond, D., Deleonibus, S., Faynot, O., 2011 IEEE Int. Symp. Circuits Syst. 2233 (2011).CrossRefGoogle Scholar
Wei, H., Patil, N., Lin, A., Wong, H.-S.P., Mitra, S., 2013 IEEE Int. Electron Devices Mtg. 511 (2013).Google Scholar