Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T00:45:21.563Z Has data issue: false hasContentIssue false

Cellular Ceramics: Intriguing Structures, Novel Properties, and Innovative Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Cellular ceramics are a class of high-porosity materials that are used or are being considered for a wide range of technological applications. A critical aspect of this development is the materials science approach required to understand the relationships between the properties of these materials and their structure. Of particular interest are the parameters that control mechanical reliability, as ceramic materials are usually brittle. In addition, it is critical to understand the way in which processing methods can influence the cellular structure. This article emphasizes one particular group of cellular ceramics known as ceramic foams. Understanding these materials involves various interdisciplinary scientific challenges in characterizing structure, developing micromechanical models, experimentally measuring properties, developing new processing approaches, and optimizing performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gibson, L.J. and Ashby, M.F., Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, 1997).CrossRefGoogle Scholar
2.Brezny, R. and Green, D.J., in Materials Science and Technology, Vol. 11, edited by Swain, M. (VCH, Weinheim, 1994) p. 463.Google Scholar
3.Schwartzwalder, K., Somers, H., and Somers, A.V., U.S. Patent No. 3,090,094 (May 21, 1963).Google Scholar
4.Green, D.J. and Colombo, P., “The Structure and Applications of Cellular Ceramics,” MRS Web Extra, www.mrs.org/publications/bulletin/2003/apr/webextra.Google Scholar
5.Bao, X., Nangrejo, M.R., and Edirisinghe, M.J., J. Mater. Sci. 35 (2000) p. 4365.CrossRefGoogle Scholar
6.Adler, J. and Standke, G., in Proc. EUROMAT 99, Vol. 1, Materials for Transportation Technology, edited by Winkler, P.J. (VCH, Weinheim, 2000) p. 270.Google Scholar
7.Zhu, X., Jiang, D., Tan, S., and Zhang, Z., J. Am. Ceram. Soc. 84 (2001) p. 1654.CrossRefGoogle Scholar
8.Sherman, A.J., Tuffias, R.H., and Kaplan, R.B., Bull. Am. Ceram. Soc. 70 (1991) p. 1025.Google Scholar
9.White, R.A., Weber, J.N., and White, E.W., Science 176 (1972) p. 922.CrossRefGoogle Scholar
10.Greil, P., J. Eur. Ceram. Soc. 21 (2001) p. 105.CrossRefGoogle Scholar
11.Sepulveda, P. and Binner, J.G.P., J. Eur. Ceram. Soc. 19 (1999) p. 2059.CrossRefGoogle Scholar
12.Fujiu, T., Messing, G.L., and Huebner, W., J. Am. Ceram. Soc. 73 (1990) p. 85.CrossRefGoogle Scholar
13.Colombo, P. and Modesti, M., J. Am. Ceram. Soc. 82 (1999) p. 573.CrossRefGoogle Scholar
14.Sepulveda, P., Bull. Am. Ceram. Soc. 76 (1997) p. 65.Google Scholar
15.Huang, J.S. and Gibson, L.J., Acta Metall. Mater. 39 (1991) p. 1627.CrossRefGoogle Scholar
16.Brezny, R. and Green, D.J., J. Am. Ceram. Soc. 76 (1993) p. 2185.CrossRefGoogle Scholar
17.Warren, W.E. and Kraynik, A.M., J. Appl. Mech. 64 (1997) p. 787.CrossRefGoogle Scholar
18.Zhu, H.X. and Mills, N.J., Int. J. Solids Struct. 37 (2000) p. 1931.CrossRefGoogle Scholar
19.Turner, C.H., Rho, J., Takano, Y., Tsui, T.Y., and Pharr, G.M., J. Biomech. 32 (1999) p. 437.CrossRefGoogle Scholar
20.Silva, M.J., Hayes, W.C., and Gibson, L.J., Int. J. Mech. Sci. 37 (1995) p. 1161.CrossRefGoogle Scholar
21.Silva, M.J. and Gibson, L.J., Int. J. Mech. Sci. 39 (1997) p. 549.CrossRefGoogle Scholar
22.Van der Burg, M.W.D., Shulmeister, V., Van der Geissen, E., and Marissen, R., J. Cell Plast. 33 (1997) p. 31.CrossRefGoogle Scholar
23.Chen, C., Lu, T.J., and Fleck, N.A., J. Mech. Phys. Solids 47 (1999) p. 2235.CrossRefGoogle Scholar
24.Zhu, Z.H., Hobdell, J.R., and Windle, A.H., Acta Mater. 48 (2000) p. 4893.CrossRefGoogle Scholar
25.Roberts, A.P. and Garboczi, E.J., J. Mech. Phys. Solids 50 (2002) p. 33.CrossRefGoogle Scholar
26.Lakes, R., Science 235 (1987) p. 1038.CrossRefGoogle Scholar
27.Sepulveda, P., dos Santos, W.N., Pandolfelli, V.C., Bressiani, J.C., and Taylor, R., Bull. Am. Ceram. Soc. 82 (1999) p. 61.Google Scholar
28.Vedula, V.R., Green, D.J., and Hellmann, J.R., J. Am. Ceram. Soc. 82 (1999) p. 649.CrossRefGoogle Scholar
29.Orenstein, R.M. and Green, D.J., J. Am. Ceram. Soc. 75 (1992) p. 1899.CrossRefGoogle Scholar
30.Innocentini, M.D.M., Salvini, V.R., Pandolfelli, V.C., and Coury, J.R., Bull. Am. Ceram. Soc. 82 (1999) p. 78.CrossRefGoogle Scholar
31.Innocentini, M.D.M., Sepulveda, P., Salvini, V.R., and Pandolfelli, V.C., J. Am. Ceram. Soc. 81 (1998) p. 3349.CrossRefGoogle Scholar
32.Gauckler, L., Waeber, M.M., Conti, C., and Jacob-Duliere, M., in Proc. 114th Annual Meeting of the Metallurgical Society of AIME, Light Metals 1985, edited by Bohner, H.O. (AIME, New York, 1985) p. 1261.Google Scholar
33.Pickenäcker, O., Pickenäcker, K., Wawezinek, K., Trimis, D., Pritkow, W.E.C., Müller, C., Goedtke, P., Papenburg, U., Adler, J., Standke, G., Heymer, H., Tauscher, W., and Jansen, F., Inter-ceram 48 (1999) p. 326.Google Scholar
34.Saracco, G., Russo, N., Ambrogio, M., Badini, C., and Specchia, V., Catal. Today 60 (1–2) (2000) p. 33.CrossRefGoogle Scholar
35.Buciuman, F.-C. and Kraushaar-Czarnetzki, B., Catal. Today 69 (1–4) (2001) p. 337.CrossRefGoogle Scholar
36.Hirschfeld, D.A., Li, T.K., and Liu, D.M., Key Eng. Mater. 115 (1996) p. 65.CrossRefGoogle Scholar
37.Nettleship, I., in Applications of Advanced Materials in a High-Tech Society, Part 1, edited by Mostaghaci, H. (Trans Tech Publications, Uetikon, Zurich, 1996); Key Eng. Mater. 122–124 (1996) p. 305.Google Scholar