Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T02:41:26.041Z Has data issue: false hasContentIssue false

Chemical principles for electroactive metal–organic frameworks

Published online by Cambridge University Press:  07 November 2016

Aron Walsh
Affiliation:
Department of Materials, Imperial College London, UK; a.walsh@imperial.ac.uk
Keith T. Butler
Affiliation:
Department of Chemistry, University of Bath, UK; k.t.butler@bath.ac.uk
Christopher H. Hendon
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, USA; hendon@mit.edu
Get access

Abstract

Metal–organic frameworks (MOFs) are porous ordered arrays of inorganic clusters connected by organic linkers. The compositional diversity of the metal and ligand, combined with varied connectivity, has yielded more than 20,000 unique structures. Electronic structure theory can provide deep insights into the fundamental chemistry and physics of these hybrid compounds and identify avenues for the design of new multifunctional materials. In this article, a number of recent advances in materials modeling of MOFs are reviewed. We present the methodology for predicting the absolute band energies (ionization potentials) of porous solids as compared to those of standard semiconductors and electrical contacts. We discuss means of controlling the optical bandgaps by chemical modification of the organic and inorganic building blocks. Finally, we outline the principles for achieving electroactive MOFs and the key challenges to be addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lejaeghere, K., Björkman, T., Blaha, P., Blügel, S., Blum, V., Caliste, D., Castelli, I.E., Clark, S.J., Dal Corso, A., de Gironcoli, S., Deutsch, T., Dewhurst, J.K., Di Marco, I., Draxl, C., Dułak, M., Eriksson, O., Flores-Livas, J.A., Garrity, K.F., Genovese, L., Giannozzi, P., Giantomassi, M., Goedecker, S., Gonze, X., Grånäs, O., Gross, E.K.U., Gulans, A., Gygi, F., Hamann, D.R., Hasnip, P.J., Holzwarth, N.A.W., Iuşan, D., Jochym, D.B., Jollet, F., Jones, D., Kresse, G., Koepernik, K., Küçükbenli, E., Kvashnin, Y.O., Locht, I.L.M., Lubeck, S., Marsman, M., Marzari, N., Nitzsche, U., Nordström, L., Ozaki, T., Paulatto, L., Pickard, C.J., Poelmans, W., Probert, M.I.J., Refson, K., Richter, M., Rignanese, G.-M., Saha, S., Scheffler, M., Schlipf, M., Schwarz, K., Sharma, S., Tavazza, F., Thunström, P., Tkatchenko, A., Torrent, M., Vanderbilt, D., van Setten, M.J., Van Speybroeck, V., Wills, J.M., Yates, J.R., Zhang, G.-X., Cottenier, S., Science 351, 1 (2016).CrossRefGoogle Scholar
Butler, K.T., Frost, J.M., Skelton, J.M., Svane, K.L., Walsh, A., Chem. Soc. Rev., published online March 18, 2016, http://dx.doi.org/10.1039/C5CS00841G.CrossRefGoogle Scholar
Wilmer, C.E., Leaf, M., Lee, C.Y., Farha, O.K., Hauser, B.G., Hupp, J.T., Snurr, R.Q., Nat. Chem. 4, 83 (2011).CrossRefGoogle Scholar
Chung, Y.G., Camp, J., Haranczyk, M., Sikora, B.J., Bury, W., Krungleviciute, V., Yildirim, T., Farha, O.K., Sholl, D.S., Snurr, R.Q., Chem. Mater. 26, 6185 (2014).CrossRefGoogle Scholar
Dove, M.T., Am. Mineral. 82, 213 (1997).CrossRefGoogle Scholar
Kieslich, G., Forse, A.C., Sun, S., Butler, K.T., Kumagai, S., Wu, Y., Warren, M.R., Walsh, A., Grey, C.P., Cheetham, A.K., Chem. Mater. 28, 312 (2016).CrossRefGoogle Scholar
Kieslich, G., Kumagai, S., Butler, K.T., Okamura, T., Hendon, C.H., Sun, S., Yamashita, M., Walsh, A., Cheetham, A.K., Chem. Commun. 51, 15538 (2015).CrossRefGoogle Scholar
Leguy, A.M.A., Frost, J.M., McMahon, A.P., Garcia Sakai, V., Kockelmann, W., Law, C.H., Li, X., Foglia, F., Walsh, A., O’Regan, B.C., Nelson, J., Cabral, J.T., Barnes, P.R.F., Nat. Commun. 6, 7124 (2015).CrossRefGoogle Scholar
Brivio, F., Frost, J.M., Skelton, J.M., Jackson, A.J., Weber, O.J., Weller, M.T., Goñi, A.R., Leguy, A.M.A., Barnes, P.R.F., Walsh, A., Phys. Rev. B Condens. Matter 92, 144308 (2015).CrossRefGoogle Scholar
Cairns, A.B., Goodwin, A.L., Chem. Soc. Rev. 42, 4881 (2013).CrossRefGoogle Scholar
Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K., Phys. Rev. Lett. 100, 136406 (2008).CrossRefGoogle Scholar
Hendon, C.H., Tiana, D., Vaid, T.P., Walsh, A., J. Mater. Chem. C 3, 95 (2013).CrossRefGoogle Scholar
Svane, K., Saines, P.J., Walsh, A., J. Mater. Chem. C 3, 11076 (2015).CrossRefGoogle Scholar
Nasalevich, M., Hendon, C.H., Santaclara, J.G., Svane, K., van der Linden, B., Veber, S.L., Fedin, M.V., Houtepen, A.J., van der Veen, M.A., Kapteijn, F., Walsh, A., Gascon, J., Sci. Rep. 6, 23676 (2016).CrossRefGoogle Scholar
Cheetham, A.K., Rao, C.N.R., Feller, R.K., Chem. Commun. 46, 4780 (2006).CrossRefGoogle Scholar
Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., Walsh, A., Nano Lett. 14, 2584 (2014).CrossRefGoogle Scholar
Cavka, J.H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., Lillerud, K.P., J. Am. Chem. Soc. 130, 13850 (2008).CrossRefGoogle Scholar
Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M., Nature 402, 276 (1999).CrossRefGoogle Scholar
Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., Férey, G., J. Am. Chem. Soc. 131, 10857 (2009).CrossRefGoogle Scholar
Shen, L., Liang, R., Luo, M., Jing, F., Wu, L., Phys. Chem. Chem. Phys. 17, 117 (2015).CrossRefGoogle Scholar
Allen, C.A., Cohen, S.M., Inorg. Chem. 53, 7014 (2014).CrossRefGoogle Scholar
Mondloch, J.E., Bury, W., Fairen-Jimenez, D., Kwon, S., DeMarco, E.J., Weston, M.H., Sarjeant, A.A., Nguyen, S.T., Stair, P.C., Snurr, R.Q., Farha, O.K., Hupp, J.T., J. Am. Chem. Soc. 135, 10294 (2013).CrossRefGoogle Scholar
Yang, D., Odoh, S.O., Wang, T.C., Farha, O.K., Hupp, J.T., Cramer, C.J., Gagliardi, L., Gates, B.C., J. Am. Chem. Soc. 137, 7391 (2015).CrossRefGoogle Scholar
Fei, H., Cohen, S.M., J. Am. Chem. Soc. 137, 2191 (2015).CrossRefGoogle Scholar
Brozek, C.K., Dincă, M., J. Am. Chem. Soc. 135, 12886 (2013).CrossRefGoogle Scholar
Hendon, C.H., Tiana, D., Fontecave, M., Sanchez, C., D’arras, L., Sassoye, C., Rozes, L., Mellot-Draznieks, C., Walsh, A., J. Am. Chem. Soc. 135, 10942 (2013).CrossRefGoogle Scholar
Butler, K.T., Hendon, C.H., Walsh, A., J. Am. Chem. Soc. 136, 2703 (2014).CrossRefGoogle Scholar
Kroemer, H., Nobel Lecture, “Quasi-Electric Fields and Band Offsets: Teaching Electrons New Tricks” (2000).CrossRefGoogle Scholar
Bardeen, J., Phys. Rev. 49, 635 (1936).CrossRefGoogle Scholar
Walsh, A., Butler, K.T., Acc. Chem. Res. 47, 364 (2014).CrossRefGoogle Scholar
Smith, E., Physica A 120A, 327 (1983).CrossRefGoogle Scholar
Ihm, J., Zunger, A., Cohen, M., J. Phys. C Solid State Phys. 12, 4409 (1979).CrossRefGoogle Scholar
Buckeridge, J., Butler, K.T., Catlow, C.R.A., Logsdail, A.J., Scanlon, D.O., Shevlin, S.A., Woodley, S.M., Sokol, A.A., Walsh, A., Chem. Mater. 27, 3844 (2015).CrossRefGoogle Scholar
Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, P., Walsh, A., Sokol, A.A., Nat. Mater. 12, 798 (2013).CrossRefGoogle Scholar
Wu, Z.-L., Wang, C.-H., Zhao, B., Dong, J., Lu, F., Wang, W.-H., Wang, W.-C., Wu, G.-J., Cui, J.-Z., Cheng, P.. Angew. Chem. Int. Ed. Engl. 55, 4938 (2016).CrossRefGoogle Scholar
Hamad, S., Hernandez, N.C., Aziz, A., Ruiz-Salvador, A.R., Calero, S., Grau-Crespo, R., J. Mater. Chem. A 3, 23458 (2015).CrossRefGoogle Scholar
Butler, K.T., Kumagai, Y., Oba, F., Walsh, A., J. Mater. Chem. C 4, 1149 (2016).CrossRefGoogle Scholar
Ozin, G.A., Adv. Mater. 4, 612 (1992).CrossRefGoogle Scholar
Hendon, C.H., Walsh, A., Chem. Sci. 6, 3674 (2015).CrossRefGoogle Scholar
Hendon, C.H., Tiana, D., Murray, A.T., Carbery, D.R., Walsh, A., Chem. Sci. 4, 4278 (2013).CrossRefGoogle Scholar
Tiana, D., Hendon, C., Walsh, A., Chem. Commun. 50, 13990 (2014).CrossRefGoogle Scholar
Talin, A.A., Centrone, A., Ford, A.C., Foster, M.E., Stavila, V., Haney, P., Kinney, R.A., Szalai, V., El Gabaly, F., Yoon, H.P., Léonard, F., Allendorf, M.D., Science 343, 6166 (2014).CrossRefGoogle Scholar
Bristow, J.K., Svane, K.L., Tiana, D., Skelton, J.M., Gale, J.D., Walsh, A., J. Phys. Chem. C 120, 9276 (2016).CrossRefGoogle Scholar
Butler, K.T., Hendon, C.H., Walsh, A., ACS Appl. Mater. Interfaces 6, 22044 (2014).CrossRefGoogle Scholar
Hendon, C.H., Wittering, K.E., Chen, T.-H., Kaveevivitchai, W., Popov, I., Butler, K.T., Wilson, C.C., Cruickshank, D.L., Miljanić, O.Š., Walsh, A., Nano Lett. 15, 2149 (2015).CrossRefGoogle Scholar
48. Web of Science, June 2016.Google Scholar
Allendorf, M.D., Schwartzberg, A., Stavila, V., Talin, A.A., Chem. Eur. J. 17, 11372 (2011).CrossRefGoogle Scholar