Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T05:09:43.953Z Has data issue: false hasContentIssue false

Defects and doping and their role in functionalizing graphene

Published online by Cambridge University Press:  23 November 2012

Sokrates T. Pantelides
Affiliation:
Vanderbilt University and Oak Ridge National Laboratory; pantelides@vanderbilt.edu
Yevgeniy Puzyrev
Affiliation:
Department of Physics and Astronomy, Vanderbilt University; yevgeniy.s.puzyrev@vanderbilt.edu
Leonidas Tsetseris
Affiliation:
School of Applied Mathematical and Physical Sciences, National Technical University, Greece; leont@mail.ntua.gr
Bin Wang
Affiliation:
Department of Physics and Astronomy, Vanderbilt University; bin.wang@vanderbilt.edu
Get access

Abstract

Graphene is a two-dimensional material with unique properties, such as superb mechanical strength and carrier mobility. Similarly to semiconductors, however, graphene is not very useful for applications in its pristine form; rather, it must be “functionalized” through judicious manipulation of defects, impurities, and adsorbates. In this article, we provide an overview of the intrinsic defects in graphene, such as vacancies, interstitials, and line defects, and their potential role in transport and other properties. We also discuss impurities and adsorbates that can act as dopants to enhance carrier densities, controlling n- and p-type conduction for transistor applications, and can serve as reactive sites for catalytic and sensor applications. Although functionalization holds significant promise, realization of that potential remains an open pursuit.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., Zettl, A., Nano Lett. 8 (11), 3582 (2008).CrossRefGoogle Scholar
Banhart, F., Kotakoski, J., Krasheninnikov, A.V., ACS Nano 5 (1), 26 (2010).CrossRefGoogle Scholar
Peres, N.M.R., Guinea, F., Castro Neto, A.H., Phys. Rev. B 73 (12), 125411 (2006).CrossRefGoogle Scholar
El-Barbary, A.A., Telling, R.H., Ewels, C.P., Heggie, M.I., Briddon, P.R., Phys. Rev. B 68 (14), 144107 (2003).CrossRefGoogle Scholar
Ma, Y., Lehtinen, P.O., Foster, A.S., Nieminen, R.M., New J. Phys. 6 (1), 68 (2004).CrossRefGoogle Scholar
Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Nieminen, R.M., Chem. Phys. Lett. 418, 132 (2006).CrossRefGoogle Scholar
Yazyev, O.V., Helm, L., Phys. Rev. B 75 (12), 5 (2007).Google Scholar
Lusk, M.T., Carr, L.D., Phys. Rev. Lett. 100, 175503 (2008).CrossRefGoogle Scholar
Lee, Y.H., Kim, S.G., Tománek, D., Phys. Rev. Lett. 78 (12), 2393 (1997).CrossRefGoogle Scholar
Lehtinen, P.O., Foster, A.S., Ayuela, A., Krasheninnikov, A., Nordlund, K., Nieminen, R.M., Phys. Rev. Lett. 91 (1), 017202 (2003).CrossRefGoogle Scholar
Kotakoski, J., Krasheninnikov, A.V., Kaiser, U., Meyer, J.C., Phys. Rev. Lett. 106 (10), 105505 (2011).CrossRefGoogle Scholar
Tsetseris, L., Pantelides, S.T., Carbon 47 (3), 901 (2009).CrossRefGoogle Scholar
Sternberg, M., Curtiss, L.A., Gruen, D.M., Kedziora, G., Horner, D.A., Redfern, P.C., Zapol, P., Phys. Rev. Lett. 96 (7), 075506 (2006).CrossRefGoogle Scholar
Wang, B., Pantelides, S.T., Phys. Rev. B 83 (24), 245403 (2011).CrossRefGoogle Scholar
Wintterlin, J., Bocquet, M.L., Surf. Sci. 603 (10–12), 1841 (2009).CrossRefGoogle Scholar
Varchon, F., Mallet, P., Magaud, L., Veuillen, J.-Y., Phys. Rev. B 77 (16), 165415 (2008).CrossRefGoogle Scholar
Yazyev, O.V., Louie, S.G., Phys. Rev. B 81 (19), 195420 (2010).CrossRefGoogle Scholar
Grantab, R., Shenoy, V.B., Ruoff, R.S., Science 330 (6006), 946 (2010).CrossRefGoogle Scholar
Gunlycke, D., White, C.T., Phys. Rev. Lett., 106 (13), 136806 (2011).CrossRefGoogle Scholar
Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L., Muller, D.A., Nature 469 (7330), 389 (2011).CrossRefGoogle Scholar
Kim, K., Lee, Z., Regan, W., Kisielowski, C., Crommie, M.F., Zettl, A., ACS Nano 5 (3), 2142 (2011).CrossRefGoogle Scholar
An, J., Voelkl, E., Suk, J.W., Li, X., Magnuson, C.W., Fu, L., Tiemeijer, P., Bischoff, M., Freitag, B., Popova, E., Ruoff, R.S., ACS Nano 5 (4), 2433 (2011).CrossRefGoogle Scholar
Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I.I., Batzill, M., Nat. Nanotechnol. 5 (5), 326 (2010).CrossRefGoogle Scholar
Yazyev, O.V., Louie, S.G., Nat. Mater. 9 (10), 806 (2010).CrossRefGoogle Scholar
Li, X., Magnuson, C.W., Venugopal, A., Tromp, R.M., Hannon, J.B., Vogel, E.M., Colombo, L., Ruoff, R.S., J. Am. Chem. Soc. 133 (9), 2816 (2011).CrossRefGoogle Scholar
Günther, S., Dänhardt, S., Wang, B., Bocquet, M.L., Schmitt, S., Wintterlin, J., Nano Lett. 11 (5), 1895 (2011).CrossRefGoogle Scholar
Chen, S., Cai, W., Piner, R.D., Suk, J.W., Wu, Y., Ren, Y., Kang, J., Ruoff, R.S., Nano Lett. 11 (9), 3519 (2011).CrossRefGoogle Scholar
Wang, B., Puzyrev, Y., Pantelides, S.T., Carbon 49 (12), 3983 (2011).CrossRefGoogle ScholarPubMed
Lherbier, A., Blase, X., Niquet, Y.-M., Triozon, F., Roche, S., Phys. Rev. Lett. 101 (3), 036808 (2008).CrossRefGoogle Scholar
Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G., Nano Lett. 9 (5), 1752 (2009).CrossRefGoogle Scholar
Lehtinen, O., Kotakoski, J., Krasheninnikov, A.V., Tolvanen, A., Nordlund, K., Keinonen, J., Phys. Rev. B 81 (15), 153401 (2010).CrossRefGoogle Scholar
Guo, B., Liu, Q., Chen, E., Zhu, H., Fang, L., Gong, J.R., Nano Lett. 10 (12), 4975 (2010).CrossRefGoogle Scholar
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S., Nat. Mater. 6 (9), 652 (2007).CrossRefGoogle Scholar
Leenaerts, O., Partoens, B., Peeters, F.M., Phys. Rev. B 77 (12), 6 (2008).CrossRefGoogle Scholar
Biel, B., Triozon, F., Blase, X., Roche, S., Nano Lett. 9 (7), 2725 (2009).CrossRefGoogle Scholar
Martins, T.B., Miwa, R.H., da Silva, A.J.R., Fazzio, A., Phys. Rev. Lett. 98 (19), 196803 (2007).CrossRefGoogle Scholar
Zhou, W., Pennycook, S.J., Idrobo, J.-C., Ultramicroscopy, published online 23 November 2011, http://dx.doi.org/10.1016/j.ultramic.2011.11.013.CrossRefGoogle Scholar
Cervantes-Sodi, F., Csányi, G., Piscanec, S., Ferrari, A.C., Phys. Rev. B 77 (16), 165427 (2008).CrossRefGoogle Scholar
Wu, M., Wu, X., Zeng, X.C., J. Phys. Chem. C 114 (9), 3937 (2010).CrossRefGoogle Scholar
Jiang, J., Turnbull, J., Lu, W., Boguslawski, P., Bernholc, J., J. Chem. Phys. 136 (1), 014702 (2012).CrossRefGoogle Scholar
Wang, X., Li, X., Zhang, L., Yoon, Y., Weber, P.K., Wang, H., Guo, J., Dai, H., Science 324 (5928), 768 (2009).CrossRefGoogle Scholar
Yazyev, O. V., Tavernelli, I., Rothlisberger, U., Helm, L., Phys. Rev. B 75 (11), 115418 (2007).CrossRefGoogle Scholar
Kotakoski, J., Meyer, J.C., Kurasch, S., Santos-Cottin, D., Kaiser, U., Krasheninnikov, A.V., Phys. Rev. B 83, 245420 (2011).CrossRefGoogle Scholar
Krasheninnikov, A.V., Miyamoto, Y., Tomanek, D., Phys. Rev. Lett. 99, 016104 (2007).CrossRefGoogle Scholar
Bubin, S., Wang, B., Pantelides, S., Varga, K., Phys. Rev. B 85, 235435 (2012).CrossRefGoogle Scholar
Zhang, E.X., Newaz, A.K.M., Wang, B., Bhandaru, S., Zhang, C.X., Fleetwood, D.M., Bolotin, K.I., Pantelides, S.T., Alles, M.L., Schrimpf, R.D., Weiss, S.M., Reed, R.A., Weller, R.A., IEEE Trans. Nucl. Sci. 58 (6), 2961 (2011).CrossRefGoogle Scholar
Nair, R.R., Sepioni, M., Tsai, I.L., Lehtinen, O., Keinonen, J., Krasheninnikov, A.V., Thomson, T., Geim, A.K., Grigorieva, I.V., Nat. Phys. 8, 199 (2012).CrossRefGoogle Scholar
Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Pyykko, Y., Nieminen, R.M., Phys. Rev. Lett. 102, 126807 (2009).CrossRefGoogle Scholar
Son, Y.-W., Cohen, M.L., Louie, S.G., Nature 444 (7117), 347 (2006).CrossRefGoogle Scholar
Jiang, J., Lu, W., Bernholc, J., Phys. Rev. Lett. 101 (24), 246803 (2008).CrossRefGoogle Scholar
Schwierz, F., Nat. Nanotechnol. 5 (7), 487 (2010).CrossRefGoogle Scholar
Avouris, P., Nano Lett. 10 (11), 4285 (2010).CrossRefGoogle Scholar
Chung, G.Y., Tin, C.C., Williams, J.R., McDonald, K., Di Ventra, M., Pantelides, S.T., Feldman, L.C., Weller, R.A., Appl. Phys. Lett. 76 (13), 1713 (2000).CrossRefGoogle Scholar
Wang, S., Dhar, S., Wang, S.-R., Ahyi, A.C., Franceschetti, A., Williams, J.R., Feldman, L.C., Pantelides, S.T., Phys. Rev. Lett. 98 (2), 026101 (2007).CrossRefGoogle Scholar
Farmer, D.B., Chiu, H.-Y., Lin, Y.-M., Jenkins, K.A., Xia, F., Avouris, P., Nano Lett. 9 (12), 4474 (2009).CrossRefGoogle Scholar
Dean, C.R., Young, A.F., MericI, , Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J., Nat. Nanotechnol. 5 (10), 722 (2010).CrossRefGoogle Scholar
Newaz, A.K.M., Puzyrev, Y.S., Wang, B., Pantelides, S.T., Bolotin, K.I., Nat. Commun. 3, 734 (2012).CrossRefGoogle Scholar
Sofo, J.O., Chaudhari, A.S., Barber, G.D., Phys. Rev. B 75 (15), 153401 (2007).CrossRefGoogle Scholar
Boukhvalov, D.W., Katsnelson, M.I., J. Am. Chem. Soc. 130 (32), 10697 (2008).CrossRefGoogle Scholar
Son, Y.-W., Cohen, M.L., Louie, S.G., Phys. Rev. Lett. 97 (21), 216803 (2006).CrossRefGoogle Scholar
Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., Ponomarenko, L.A., Morozov, S.V., Gleeson, H.F., Hill, E.W., Geim, A.K., Novoselov, K.S., Nano Lett. 8 (6), 1704 (2008).CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S., Nat. Nanotechnol. 5 (8), 574 (2010).CrossRefGoogle Scholar
Qu, L., Liu, Y., Baek, J.-B., Dai, L., ACS Nano 4 (3), 1321 (2010).CrossRefGoogle Scholar
Zhao, L., He, R., Rim, K.T., Schiros, T., Kim, K.S., Zhou, H., Gutiérrez, C., Chockalingam, S.P., Arguello, C.J., Pálová, L., Nordlund, D., Hybertsen, M.S., Reichman, D.R., Heinz, T.F., Kim, P., Pinczuk, A., Flynn, G.W., Pasupathy, A.N., Science 333 (6045), 999 (2011).CrossRefGoogle Scholar
Niwa, H., Horiba, K., Harada, Y., Oshima, M., Ikeda, T., Terakura, K., Ozaki, J.-I., Miyata, S., J. Power Sources 187 (1), 93 (2009).CrossRefGoogle Scholar
Yu, L., Pan, X., Cao, X., Hu, P., Bao, X.H., J. Catal. 282 (1), 183 (2011).CrossRefGoogle Scholar
Yoo, E., Okata, T., Akita, T., Kohyama, M., Nakamura, J., Honma, I., Nano Lett. 9 (6), 2255 (2009).CrossRefGoogle Scholar
Zhou, M., Zhang, A., Dai, Z., Zhang, C., Feng, Y.P., J. Chem. Phys. 132 (19), 194704 (2010).CrossRefGoogle Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T., Pennycook, S.J., Nature 464 (7288), 571 (2010).CrossRefGoogle Scholar
Zhou, W., Lee, J., Nanda, J., Pantelides, S.T., Pennycook, S.J., Idrobo, J.-C., Nat. Nanotechnol. 7, 161 (2012).CrossRefGoogle Scholar