Published online by Cambridge University Press: 08 September 2016
Establishing strategies for high-resolution micrometer to subnanometer structural control is an essential feature of any versatile materials design paradigm. Colloidal crystal (CC) templating not only establishes tunable replica pore topologies, but interfacial- and confinement-mediated phenomena extend its impact for tailoring properties such as pore hierarchy, topological diversity, and macroscopic morphology, as well as nucleation, growth, and crystallinity. Coupled with emerging strategies for “single-pot” template-replica co-assembly and efforts to expand the accessible materials palette, CC-templating offers promise for application-driven, rational materials design.