Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T03:42:37.792Z Has data issue: false hasContentIssue false

DNA origami: The bridge from bottom to top

Published online by Cambridge University Press:  08 December 2017

Anqin Xu
Affiliation:
Department of Chemistry, University of Pittsburgh, USA; anx3@pitt.edu
John N. Harb
Affiliation:
Department of Engineering and Technology, Brigham Young University, USA; john_harb@byu.edu
Mauri A. Kostiainen
Affiliation:
School of Chemical Engineering, Aalto University, Finland; mauri.kostiainen@aalto.fi
William L. Hughes
Affiliation:
Boise State University, USA; willhughes@boisestate.edu
Adam T. Woolley
Affiliation:
Department of Chemistry and Biochemistry, Brigham Young University, USA; atw@byu.edu
Haitao Liu
Affiliation:
Department of Chemistry, University of Pittsburgh, USA; hliu@pitt.edu
Ashwin Gopinath
Affiliation:
Department of Bioengineering, California Institute of Technology, USA; ashwing@caltech.edu
Get access

Abstract

Over the last decade, DNA origami has matured into one of the most powerful bottom-up nanofabrication techniques. It enables both the fabrication of nanoparticles of arbitrary two-dimensional or three-dimensional shapes, and the spatial organization of any DNA-linked nanomaterial, such as carbon nanotubes, quantum dots, or proteins at ∼5-nm resolution. While widely used within the DNA nanotechnology community, DNA origami has yet to be broadly applied in materials science and device physics, which now rely primarily on top-down nanofabrication. In this article, we first introduce DNA origami as a modular breadboard for nanomaterials and then present a brief survey of recent results demonstrating the unique capabilities created by the combination of DNA origami with existing top-down techniques. Emphasis is given to the open challenges associated with each method, and we suggest potential next steps drawing inspiration from recent work in materials science and device physics. Finally, we discuss some near-term applications made possible by the marriage of DNA origami and top-down nanofabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wu, S.Y., Lin, C.Y., Chiang, M.C., Liaw, J.J., Cheng, J.Y., Yang, S.H., Tsai, C.H., Chen, P.N., Miyashita, T., Chang, C.H., Chang, V.S., Pan, K.H., Chen, J.H., Mor, Y.S., Lai, K.T., Liang, C.S., Chen, H.F., Chang, S.Y., Lin, C.J., Hsieh, C.H., Tsui, R.F., Yao, C.H., Chen, C.C., Chen, R., Lee, C.H., Lin, H.J., Chang, C.W., Chen, K.W., Tsai, M.H., Chen, K.S., Ku, Y., Jang, S.M., IEDM Tech. Dig. 2.6.12.6.4 (2017), https://doi.org/10.1109/IEDM.2016.7838333.Google Scholar
Xia, Y., Whitesides, G.M., Annu. Rev. Mater. Sci. 28, 1 (2015).Google Scholar
Zhang, J., Li, Y., Zhang, X., Yang, B., Adv. Mater. 22, 4249 (2010).Google Scholar
Seeman, N.C., Annu. Rev. Biochem. 79, 65 (2010).CrossRefGoogle Scholar
Rothemund, P.W.K., Nature 440, 297 (2006).Google Scholar
Praetorius, F., Kick, B., Behler, K.L., Honemann, M.N., Weuster-Botz, D., Dietz, H., Nature (forthcoming).Google Scholar
Keren, K., Krueger, M., Gilad, R., Ben-Yoseph, G., Sivan, U., Braun, E. Science 297, 72 (2002).CrossRefGoogle Scholar
Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H., Science 301, 1882 (2003).Google Scholar
Gürr, F.N., Schwarz, F.W., Ye, J., Diez, S., Schmidt, T.L., ACS Nano 10, 5374 (2016).Google Scholar
Liu, J., Geng, Y., Pound, E., Gyawali, S., Ashton, J.R., Hickey, J., Woolley, A.T., Harb, J.N., ACS Nano 5, 2240 (2011).Google Scholar
Knudsen, J.B., Liu, L., Kodal, A.L.B., Madsen, M., Li, Q., Song, J., Woehrstein, J.B., Wickham, S.F.J., Strauss, M.T., Schueder, F., Vinther, J., Krissanaprasit, A., Gudnason, D., Allen, A., Smith, A., Ogaki, R., Zelikin, A.N., Besenbacher, F., Birkedal, V., Yin, P., Shih, W.M., Jungmann, R., Dong, M., Gothelf, K.V., Nat. Nanotechnol. 10, 892 (2015).Google Scholar
Maune, H.T., Han, S.-P., Barish, R.D., Bockrath, M., Goddard, W.A. III, Rothemund, P.W.K., Winfree, E., Nat. Nanotechnol. 5, 61 (2010).CrossRefGoogle Scholar
Ko, S.H., Gallatin, G.M., Liddle, J.A., Adv. Funct. Mater. 22, 1015 (2012).Google Scholar
Voigt, N.V., Tørring, T., Rotaru, A., Jacobsen, M.F., Ravnsbæk, J.B., Subramani, R., Mamdouh, W., Kjems, J., Mokhir, A., Besenbacher, F., Gothelf, K.V. Nat. Nanotechnol. 5, 200 (2010).Google Scholar
Kuzyk, A., Schreiber, R., Zhang, H., Govorov, A.O., Liedl, T., Liu, N., Nat. Mater. 13, 862 (2014).Google Scholar
Roller, E.-M., Besteiro, L.V., Pupp, C., Khorashad, L.K., Govorov, A.O., Liedl, T., Nat. Phys. 13, 761 (2017), doi:10.1038/nphys4120.Google Scholar
Pilo-Pais, M., Acuna, G.P., Tinnerfeld, P., Liedl, T., MRS Bull. 42 (12), 936 (2017).Google Scholar
Zhang, T., Gao, N., Li, S., Lang, M.J., Xu, Q.-H., J. Phys. Chem. Lett. 6, 2043 (2015).Google Scholar
Acuna, G.P., Möller, F.M., Holzmeister, P., Beater, S., Lalkens, B., Tinnefeld, P., Science 338, 506 (2012).Google Scholar
Burns, J.R., Stulz, E., Howorka, S., Nano Lett. 13, 2351 (2013).Google Scholar
Funke, J.J., Dietz, H., Nat. Nanotechnol. 11, 47 (2016).Google Scholar
Gopinath, A., Rothemund, P.W.K., ACS Nano 8, 12030 (2014).CrossRefGoogle Scholar
Gállego, I., Grover, M.A., Hud, N.V., Angew. Chem. Int. Ed. Engl. 54 6765 (2015).CrossRefGoogle Scholar
Ponnuswamy, N., Bastings, M.M.C., Nathwani, B., Ryu, J.H., Chou, L.Y.T., Vinther, M., Nat. Commun. 8, 15654 (2017).CrossRefGoogle Scholar
Agarwal, N.P., Matthies, M., Gür, F.N., Osada, K., Schmidt, T.L., Angew. Chem. Int. Ed. Engl. 56, 5460 (2017).Google Scholar
Cui, Y., Björk, M.T., Liddle, J.A., Sönnichsen, C., Boussert, B., Alivisatos, A.P., Nano Lett. 4, 1093 (2004).Google Scholar
Gerdon, A.E., Oh, S.S., Hsieh, K., Ke, Y., Yan, H., Soh, H.T., Small 5, 1942 (2009).CrossRefGoogle Scholar
Ding, B., Wu, H., Xu, W., Zhao, Z., Liu, Y., Yu, H., Yan, H., Nano Lett. 10, 5065 (2010).Google Scholar
Kershner, R.J., Bozano, L.D., Micheel, C.M., Hung, A.M., Fornof, A.R., Cha, J.N., Rettner, C.T., Bersani, M., Frommer, J., Rothemund, P.W.K., Wallraff, G.M., Nat. Nanotechnol. 4, 557 (2009).Google Scholar
Gopinath, A., Miyazono, E., Faraon, A., Rothemund, P.W.K., Nature 535, 401 (2016).CrossRefGoogle Scholar
Martin, J.E., Wilcoxon, J.P., Odinek, J., Provencio, P., J. Phys. Chem. B 104, 9475 (2000).Google Scholar
Wilk, T., Webster, S.C., Kuhn, A., Rempe, G., Science (80-) 317, 488 (2007).CrossRefGoogle Scholar
Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., Simmons, M.Y., Nat. Nanotechnol. 7, 242 (2012).Google Scholar
Surwade, S.P., Zhao, S., Liu, H., J. Am. Chem. Soc. 133, 11868 (2011).Google Scholar
Diagne, C.T., Brun, C., Gasparutto, D., Baillin, X., Tiron, R., ACS Nano 10, 6458 (2016).Google Scholar
Surwade, S.P., Zhou, F., Wei, B., Sun, W., Powell, A., O’Donnell, C., Yin, P., Liu, H., J. Am. Chem. Soc. 135, 6778 (2013).CrossRefGoogle Scholar
Schreiber, R., Kempter, S., Holler, S., Schüller, V., Schiffels, D., Simmel, S.S., Nickels, P.C., Liedl, T., Small 7, 1795 (2011).Google Scholar
Surwade, S.P., Zhou, F., Li, Z., Powell, A., O’Donnella, C., Liu, H., Chem. Commun. 52, 1677 (2016).Google Scholar
Busuttil, K., Rotaru, A., Dong, M., Besenbachera, F., Gothelf, K.V., Chem. Commun. 49, 1927 (2013).Google Scholar
Tian, C., Kim, H., Sun, W., Kim, Y., Yin, P., Liu, H., ACS Nano 11, 227 (2017).Google Scholar
Busuttil, K., Rotaru, A., Dong, M., Besenbacher, F., Gothelf, K.V., Chem. Commun. (Camb.) 49, 1927 (2013).Google Scholar
Tokura, Y., Jiang, Y., Welle, A., Stenzel, M.H., Krzemien, K.M., Michaelis, J., Berger, R., Barner-Kowollik, C., Wu, Y., Weil, T., Angew. Chem. Int. Ed. Engl. 55, 5692 (2016).Google Scholar
Discekici, E.H., Pester, C.W., Treat, N.J., Lawrence, J., Mattson, K.M., Narupai, B., Toumayan, E.P., Luo, Y., McGrath, A.J., Clark, P.G., de Alaniz, J.R., Hawker, C.J., ACS Macro Lett. 5, 258 (2016).Google Scholar
Huang, Z., Geyer, N., Werner, P., De Boor, J., Gösele, U., Adv. Mater. 23, 285 (2011).Google Scholar
Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., Tour, J.M., Nature 468, 549 (2010).CrossRefGoogle Scholar
Zhou, F., Sun, W., Ricardo, K.B., Wang, D., Shen, J., Yin, P., Liu, H., ACS Nano 10, 3069 (2016).Google Scholar
Lee, S.L., Chen, K-N., Lu, J.J-Q., J. Microelectromech. Syst. 20, 885 (2011).Google Scholar
Yu, N., Capasso, F., Nat. Mater. 13, 139 (2014).Google Scholar
Chong, K.E., Hopkins, B., Staude, I., Miroshnichenko, A.E., Dominguez, J., Decker, M., Neshev, D.N., Brener, I., Kivshar, Y.S., Small 10, 1985 (2014).Google Scholar
Yan, H., Low, T., Guinea, F., Xia, F., Avouris, P., Nano Lett. 14, 4581 (2014).Google Scholar
Fang, Z., Wang, Y., Schlather, A.E., Liu, Z., Ajayan, P.M., García de Abajo, F.J., Nordlander, P., Zhu, X., Halas, N.J., Nano Lett. 14, 299 (2014).Google Scholar
Zhang, S., Chen, Y., Sci. Rep. 5, 16637 (2015).Google Scholar
Tikhomirov, G., Petersen, P., Qian, L., Nat. Nanotechnol. 12, 251 (2017).Google Scholar
Liu, W., Zhong, H., Wang, R., Seeman, N.C., Angew. Chem. Int. Ed. Engl. 50, 264 (2011).Google Scholar
Suzuki, Y., Endo, M., Sugiyama, H., Nat. Commun. 6, 8052 (2015).Google Scholar
Woo, S., Rothemund, P.W.K., Nat. Chem. 3, 620 (2011).Google Scholar
Rafat, A., Pirzer, T., Scheible, M.B., Kostina, A., Simmel, F.C., Angew. Chem. Int. Ed. Engl. 53, 7665 (2014).Google Scholar