Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T02:15:30.691Z Has data issue: false hasContentIssue false

The effects of percolation in nanostructured transparent conductors

Published online by Cambridge University Press:  20 October 2011

Sukanta De
Affiliation:
Center for Research in Adaptive Nanostructures and Nanodevices, and School of Physics, Trinity College Dublin, Ireland; desu@tcd.ie
Jonathan N. Coleman
Affiliation:
Center for Research in Adaptive Nanostructures and Nanodevices and School of Physics, Trinity College Dublin, Ireland; colemaj@tcd.ie
Get access

Abstract

Networks of nanoscale conductors such as carbon nanotubes, graphene, and metallic nanowires are promising candidates to replace metal oxides as transparent conductors. However, very few previous reports have described nanostructured thin films that reach the standards required by industry for high-performance transparent electrodes. In this review, we analyze the sheet resistance and transmittance data extracted from published literature for solution processed, nanostructured networks. In the majority of cases, as their thickness is reduced below a critical value, nanoconductor networks undergo a transition from bulk-like to percolative behavior. Such percolative behavior is characteristic of sparse networks with limited connectivity and few continuous conductive paths. This transition tends to occur for films with a transmittance between 50% and 90%, which means that the properties of highly transparent films are predominately limited by percolation. Consequently, to achieve low resistance coupled with high transparency, the networks must be much more conductive than would otherwise be the case. We show that highly conductive networks of metallic nanowires appear to be the most promising candidate to replace traditional transparent electrode materials from a technical standpoint. However, many other factors, including cost, manufacturability, and stability, will have to be addressed before commercialization of these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Batzill, M., Diebold, U., Prog. Surf. Sci. 79, 47 (2005).CrossRefGoogle Scholar
2.Gordon, R.G., MRS Bull. 25, 52 (2000).CrossRefGoogle Scholar
3.Hecht, D.S., Hu, L.B., Irvin, G., Adv. Mater. 23, 1482 (2011).CrossRefGoogle Scholar
4.Cairns, D.R., Crawford, G.P., Proc. IEEE 93, 1451 (2005).CrossRefGoogle Scholar
5.Cairns, D.R., Witte, R.P., Sparacin, D.K., Sachsman, S.M., Paine, D.C., Crawford, G.P., Newton, R.R., Appl. Phys. Lett. 76, 1425 (2000).CrossRefGoogle Scholar
6.Chen, Z., Cotterell, B., Wang, W., Eng. Fract. Mech. 69, 597 (2002).CrossRefGoogle Scholar
7.Leterrier, Y., Medico, L., Demarco, F., Manson, J.A.E., Betz, U., Escola, M.F., Olsson, M.K., Atamny, F., Thin Solid Films 460, 156 (2004).CrossRefGoogle Scholar
8.den Boer, W., Smith, G.S., J. SID 13, 199 (2005).Google Scholar
9.Rowell, M.W., McGehee, M.D., Energy Environ. Sci. 4, 131 (2011).CrossRefGoogle Scholar
10.Scardaci, V., Coull, R., Lyons, P. E., Rickard, D., Coleman, J.N., Small 7 (18), 2621 (2011).CrossRefGoogle Scholar
11.Schrage, C., Kaskel, S., ACS Appl. Mater. Interfaces 1, 1640 (2009).CrossRefGoogle Scholar
12.Dan, B., Irvin, G.C., Pasquali, M., ACS Nano 3, 835 (2009).CrossRefGoogle Scholar
13.De, S., Lyons, P.E., Sorrel, S., Doherty, E.M., King, P.J., Blau, W.J., Nirmalraj, P.N., Boland, J.J., Scardaci, V., Joimel, J., Coleman, J.N., ACS Nano 3, 714 (2009).CrossRefGoogle Scholar
14.Geng, H.Z., Kim, K.K., So, K.P., Lee, Y.S., Chang, Y., Lee, Y.H., J. Am. Chem. Soc. 129, 7758 (2007).CrossRefGoogle Scholar
15.Hu, L., Hecht, D.S., Gruner, G., Nano Lett. 4, 2513 (2004).CrossRefGoogle Scholar
16.Wu, Z.C., Chen, Z.H., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G., Science 305, 1273 (2004).CrossRefGoogle Scholar
17.Li, Z.R., Kandel, H.R., Dervishi, E., Saini, V., Xu, Y., Biris, A.R., Lupu, D., Salamo, G.J., Biris, A.S., Langmuir 24, 2655 (2008).CrossRefGoogle ScholarPubMed
18.Manivannan, S., Ryu, J.H., Jang, J., Park, K.C., J. Mater. Sci. - Mater. Electron. 21, 595 (2010).CrossRefGoogle Scholar
19.Pei, S.F., Du, J.H., Zeng, Y., Liu, C., Cheng, H.M., Nanotechnology 20, 235707 (2009).CrossRefGoogle Scholar
20.Fanchini, G., Miller, S., Parekh, L.B., Chhowalla, M., Nano Lett. 8, 2176 (2008).CrossRefGoogle Scholar
21.Parekh, B.B., Fanchini, G., Eda, G., Chhowalla, M., Appl. Phys. Lett. 90, 121913 (2007).CrossRefGoogle Scholar
22.Unalan, H.E., Fanchini, G., Kanwal, A., Du Pasquier, A., Chhowalla, M., Nano Lett. 6, 677 (2006).CrossRefGoogle Scholar
23.Chandra, B., Afzali, A., Khare, N., El-Ashry, M.M., Tulevski, G.S., Chem. Mater. 22, 5179 (2010).CrossRefGoogle Scholar
24.Wang, Y., Di, C.A., Liu, Y.Q., Kajiura, H., Ye, S.H., Cao, L.C., Wei, D.C., Zhang, H.L., Li, Y.M., Noda, K., Adv. Mater. 20, 4442 (2008).CrossRefGoogle Scholar
25.Li, Z.R., Kandel, H.R., Dervishi, E., Saini, V., Biris, A.S., Biris, A.R., Lupu, D., Appl. Phys. Lett. 91, 053115 (2007).CrossRefGoogle Scholar
26.Tantang, H., Ong, J.Y., Loh, C.L., Dong, X.C., Chen, P., Chen, Y., Hu, X., Tan, L.P., Li, L.J., Carbon 47, 1867 (2009).CrossRefGoogle Scholar
27.Geng, H.Z., Lee, D.S., Kim, K.K., Kim, S.J., Bae, J.J., Lee, Y.H., J. Korean Phys. Soc. 53, 979 (2008).CrossRefGoogle Scholar
28.Park, Y.T., Ham, A.Y., Grunlan, J.C., J. Mater. Chem. 21, 363 (2011).CrossRefGoogle Scholar
29.Geng, H.Z., Kim, K.K., Song, C., Xuyen, N.T., Kim, S.M., Park, K.A., Lee, D.S., An, K.H., Lee, Y.S., Chang, Y., Lee, Y.J., Choi, J.Y., Benayad, A., Lee, Y.H., J. Mater. Chem. 18, 1261 (2008).CrossRefGoogle Scholar
30.Yang, S.B., Kong, B.S., Geng, J., Jung, H.T., J. Phys. Chem. C 113, 13658 (2009).CrossRefGoogle Scholar
31.Shin, D.W., Lee, J.H., Kim, Y.H., Yu, S.M., Park, S.Y., Yoo, J.B., Nanotechnology 20, 475703 (2009).CrossRefGoogle Scholar
32.Green, A.A., Hersam, M.C., Nat. Nanotechnol. 4, 64 (2009).CrossRefGoogle Scholar
33.Green, A.A., Hersam, M.C., Nano Lett. 8, 1417 (2008).CrossRefGoogle Scholar
34.Southard, A., Sangwan, V., Cheng, J., Williams, E.D., Fuhrer, M.S., Org. Electron. 10, 1556 (2009).CrossRefGoogle Scholar
35.Doherty, E.M., De, S., Lyons, P.E., Shmeliov, A., Nirmalraj, P.N., Scardaci, V., Joimel, J., Blau, W.J., Boland, J.J., Coleman, J.N., Carbon 47, 2466 (2009).CrossRefGoogle Scholar
36.De, S., Higgins, T., Lyons, P.E., Doherty, E.M., Nirmalraj, P.N., Blau, W.J., Boland, J.J., Coleman, J.N., ACS Nano 3, 1767 (2009).CrossRefGoogle Scholar
37.Lee, J.Y., Connor, S.T., Cui, Y., Peumans, P., Nano Lett. 8, 689 (2008).CrossRefGoogle Scholar
38.Madaria, A.R., Kumar, A., Ishikawa, F.N., Zhou, C.W., Nano Res. 3, 564 (2010).CrossRefGoogle Scholar
39.Madaria, A.R., Kumar, A., Zhou, C.W., Nanotechnology 22, 245201 (2011).CrossRefGoogle Scholar
40.Rathmell, A.R., Bergin, S.M., Hua, Y.L., Li, Z.Y., Wiley, B.J., Adv. Mater. 22, 3558 (2010).CrossRefGoogle Scholar
41.Wu, H., Hu, L.B., Rowell, M.W., Kong, D.S., Cha, J.J., McDonough, J.R., Zhu, J., Yang, Y.A., McGehee, M.D., Cui, Y., Nano Lett. 10, 4242 (2010).CrossRefGoogle Scholar
42.Hu, L.B., Kim, H.S., Lee, J.Y., Peumans, P., Cui, Y., ACS Nano 4, 2955 (2010).CrossRefGoogle Scholar
43.Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y., ACS Nano 2, 463 (2008).CrossRefGoogle Scholar
44.Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., Ponomarenko, L.A., Morozov, S.V., Gleeson, H.F., Hill, E.W., Geim, A.K., Novoselov, K.S., Nano Lett. 8, 1704 (2008).CrossRefGoogle Scholar
45.De, S., Coleman, J.N., ACS Nano 4, 2713 (2010).CrossRefGoogle Scholar
46.De, S., King, P.J., Lotya, M., O’Neill, A., Doherty, E.M., Hernandez, Y., Duesberg, G.S., Coleman, J.N., Small 6, 458 (2010).CrossRefGoogle Scholar
47.Eda, G., Fanchini, G., Chhowalla, M., Nat. Nanotechnol. 3, 270 (2008).CrossRefGoogle Scholar
48.Hong, T.K., Lee, D.W., Choi, H.J., Shin, H.S., Kim, B.S., ACS Nano 4, 3861 (2010).CrossRefGoogle Scholar
49.Yamaguchi, H., Eda, G., Mattevi, C., Kim, H., Chhowalla, M., ACS Nano 4, 524 (2010).CrossRefGoogle Scholar
50.Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mostrogiovanni, D., Granozzi, G., Garfunkel, E., Chhowalla, M., Adv. Funct. Mater. 19, 2577 (2009).CrossRefGoogle Scholar
51.Wang, X., Zhi, L.J., Tsao, N., Tomovic, Z., Li, J.L., Mullen, K., Angew. Chem. Int. Ed. 47, 2990 (2008).CrossRefGoogle Scholar
52.Eda, G., Lin, Y.Y., Miller, S., Chen, C.W., Su, W.F., Chhowalla, M., Appl. Phys. Lett. 92, 233305 (2008).CrossRefGoogle Scholar
53.Wu, J.B., Becerril, H.A., Bao, Z.N., Liu, Z.F., Chen, Y.S., Peumans, P., Appl. Phys. Lett. 92, 263302 (2008).CrossRefGoogle Scholar
54.Zhu, Y.W., Cai, W.W., Piner, R.D., Velamakanni, A., Ruoff, R.S., Appl. Phys. Lett. 95, 103104 (2009).CrossRefGoogle Scholar
55.Tien, H.W., Huang, Y.L., Yang, S.Y., Wang, J.Y., Ma, C.C.M., Carbon 49, 1550 (2011).CrossRefGoogle Scholar
56.Cote, L.J., Kim, F., Huang, J.X., J. Am. Chem. Soc. 131, 1043 (2009).CrossRefGoogle Scholar
57.Kim, Y.K., Min, D.H., Langmuir 25, 11302 (2009).CrossRefGoogle Scholar
58.Liu, Y.Q., Gao, L., Sun, J., Wang, Y., Zhang, J., Nanotechnology 20, 465605 (2009).CrossRefGoogle Scholar
59.Liang, Y.Y., Frisch, J., Zhi, L.J., Norouzi-Arasi, H., Feng, X.L., Rabe, J.P., Koch, N., Mullen, K., Nanotechnology 20, 434007 (2009).CrossRefGoogle Scholar
60.Li, X.L., Zhang, G.Y., Bai, X.D., Sun, X.M., Wang, X.R., Wang, E., Dai, H.J., Nat. Nanotechnol. 3, 538 (2008).CrossRefGoogle Scholar
61.Biswas, S., Drzal, L.T., Nano Lett. 9, 167 (2009).CrossRefGoogle Scholar
62.Wang, X., Zhi, L.J., Mullen, K., Nano Lett. 8, 323 (2008).CrossRefGoogle Scholar
63.Green, A.A., Hersam, M.C., Nano Lett. 9, 4031 (2009).CrossRefGoogle Scholar
64.Geng, H.Z., Lee, D.S., Kim, K.K., Han, G.H., Park, H.K., Lee, Y.H., Chem. Phys. Lett. 455, 275 (2008).CrossRefGoogle Scholar
65.Scardaci, V., Coull, R., Coleman, J.N., Appl. Phys. Lett. 97 (2010).CrossRefGoogle Scholar
66.Saran, N., Parikh, K., Suh, D.S., Munoz, E., Kolla, H., Manohar, S.K., J. Am. Chem. Soc. 126, 4462 (2004).CrossRefGoogle Scholar
67.Dressel, M., Gruner, G., Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, Cambridge, UK, 2002).CrossRefGoogle Scholar
68.De, S., King, P.J., Lyons, P.E., Khan, U., Coleman, J.N., ACS Nano 4, 7064 (2010).CrossRefGoogle Scholar
69.Stauffer, D.S., Aharony, A., Introduction to Percolation Theory (Taylor & Francis, London, UK, 1994).Google Scholar
70.Nirmalraj, P.N., Lutz, T., Kumar, S., Duesberg, G.S., Boland, J.J., Nano Lett. 11, 16 (2011).CrossRefGoogle Scholar
71.Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K., Science 320, 1308 (2008).CrossRefGoogle Scholar
72.Hecht, D.S., Heintz, A.M., Lee, R., Hu, L.B., Moore, B., Cucksey, C., Risser, S., Nanotechnology 22, 075201 (2011).CrossRefGoogle Scholar
73.Nirmalraj, P.N., Lyons, P.E., De, S., Coleman, J.N., Boland, J.J., Nano Lett. 9, 3890 (2009).CrossRefGoogle Scholar
74.Hecht, D., Hu, L.B., Gruner, G., Appl. Phys. Lett. 89, 133112 (2006).CrossRefGoogle Scholar
75.Lyons, P.E., De, S., Blighe, F., Nicolosi, V., Pereira, L.F.C., Ferreira, M.S., Coleman, J.N., J. Appl. Phys. 104, 044302 (2008).CrossRefGoogle Scholar
76.Shin, D.H., Shim, H.C., Song, J.W., Kim, S., Hana, C.S., Scr. Mater. 60, 607 (2009).CrossRefGoogle Scholar
77.Ruzicka, B., Degiorgi, L., Gaal, R., Thien-Nga, L., Bacsa, R., Salvetat, J.P., Forro, L., Phys. Rev. B 61, R2468 (2000).CrossRefGoogle Scholar
78.Ugawa, A., Hwang, J., Gommans, H.H., Tashiro, H., Rinzler, A.G., Tanner, D.B., Curr. Appl. Phys. 1, 45 (2001).CrossRefGoogle Scholar
Supplementary material: File

De and Coleman supplementary material

De and Coleman supplementary material

Download De and Coleman supplementary material(File)
File 174.6 KB