Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T04:49:17.708Z Has data issue: false hasContentIssue false

Electric power grid application requirements for superconductors

Published online by Cambridge University Press:  16 August 2011

A.P. Malozemoff*
Affiliation:
American Superconductor Corp., Devens, MA 01434-4020, USA; amalozemoff@amsc.com
Get access

Abstract

Electric power grid applications impose many requirements on high-temperature superconductor (HTS) materials. In addition to a high superconductor transition temperature, these include all the parameters enabling a cost-effective, robust, and high-performance wire: high current-carrying capability in relevant ranges of field and temperature, flexibility and mechanical strength in a wire form, electrical and chemical stability, low ac loss, high wire uniformity, and low wire manufacturing cost with high reproducibility and yield. This daunting list explains why it has taken so long to bring HTS wires to where they are today—starting to be used in commercial power projects. The benefits of these wires are very significant: high efficiency and power density in an accessible temperature range, enabling high-capacity and easily installed cables, compact and powerful rotating machinery, and unique current-limiting functionality. However, the job is not done. Improved wire properties and reduced manufacturing costs of existing materials will further broaden the impact of this technology. Meanwhile the search for new materials—and for room-temperature superconductors—must continue, with more attention to thermal fluctuations, flux creep, and reduced anisotropy, which are critical to their application potential.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Larbalestier, D.C., in 100 Years of Superconductivity, Rogalla, H., Kes, P., Eds. (2011), in press.Google Scholar
2.Schwartz, J., Sastry, P.V.P.S.S., in Handbook of Superconducting Materials, Cardwell, D.A., Ginley, D.S., Eds. (Institute of Physics Publishing, Bristol, UK, 2003), Vol. 1, pp.10291048.CrossRefGoogle Scholar
3.Cardwell, D.A., Ginley, D.S., Eds., Handbook of Superconducting Materials (Institute of Physics Publishing, Bristol, UK, 2003), Vol. 2, pp. 15501650.CrossRefGoogle Scholar
4.Malozemoff, A.P., IEEE Trans. Appl. Supercond. 16, 54 (2006).CrossRefGoogle Scholar
5.Scanlan, R.M., Malozemoff, A.P., Larbalestier, D.C., Proc. IEEE 92, 1639 (2004).CrossRefGoogle Scholar
6.Schwall, R.E., Proceedings of the 2001 International Workshop on Superconductivity, Honolulu, Hawaii (ISTEC, Tokyo 2001), pp. 263266.Google Scholar
7.Chu, C.W., in Handbook of Superconducting Materials, Cardwell, D.A., Ginley, D.S. (Institute of Physics Publishing, Bristol, UK, 2003), Vol. 2, pp. 19932006.CrossRefGoogle Scholar
8.Gurevich, A., Nat. Mater. 10, 255 (2011).CrossRefGoogle Scholar
9.Tinkham, M., Introduction to Superconductivity, second edition (McGraw-Hill, New York, NY, 1996), pp. 7.Google Scholar
10.Malozemoff, A.P., in Physical Properties of High Temperature Supercodonductors, Ginsberg, D., Ed. (World Scientific Publishing, Singapore 1989), pp. 71150.Google Scholar
11.Koblischka-Veneva, A., Sakai, N., Tajima, S., Murakami, M., in Handbook of Superconducting Materials, Cardwell, D.A., Ginley, D.S., Eds. (Institute of Physics Publishing, Bristol, UK, 2003), Vol. 1, pp. 893946.CrossRefGoogle Scholar
12.Mikheenko, P.N., Uprety, K.K., Dou, S.X., in Handbook of Superconducting Materials, Cardwell, D.A., Ginley, D.S., Eds. (Institute of Physics Publishing, Bristol, UK, 2003), Vol. 1, pp. 947992.CrossRefGoogle Scholar
13.Malozemoff, A.P., Physica C 185189, 264 (1991).CrossRefGoogle Scholar
14.Civale, L., presented at the 2009International Workshop on Coated Conductors for Applications, Barcelona, Spain (2224 November 2009).Google Scholar
15.Malozemoff, A.P., Fisher, M.P.A., Phys. Rev. B 42, 6784 (1990).CrossRefGoogle Scholar
16.Caracino, P., Mele, R., Nassi, M., in Handbook of Superconducting Materials, Cardwell, D.A., Ginley, D.S., Eds. (Institute of Physics Publishing, Bristol, UK, 2003), Vol. 1, pp. 16131624.Google Scholar
17.Rupich, M., Hellstrom, E., in 100 Years of Superconductivity, Rogalla, H., Kes, P., Eds. (2011), in press.Google Scholar
18.Malozemoff, A.P., Yamada, Y., in 100 Years of Superconductivity, Rogalla, H., Kes, P., (2011), in press.Google Scholar
19.McCall, J., Gamble, B., Eckroad, S., CIGRE Canada Conference on Power Systems, Toronto, Canada (4–6 October 2009), pp. 152.Google Scholar
20.Allais, A., European patent, EP 1923926 B1 (January 12, 2011).Google Scholar
21.Snitchler, G., in Proc. International Power Electronics Conference, Sapporo, Japan (2124 June 2010); IEEE Xplore and CD-ROM Conference Proceedings.Google Scholar
22.Kalsi, S., Weeber, K., Takesue, H., Lewis, C., Neumueller, H.-W., Blaugher, R.D., Proc. IEEE 92, 1688 (2004).CrossRefGoogle Scholar
23.Weijers, H.W., Trociewitz, U.P., Markiewicz, W.D., Jiang, J., Myers, D., Hellstrom, E.E., Xu, A., Jaroszynski, J., Noyes, P., Viouchkov, Y., Larbalestier, D.C., IEEE Trans. Appl. Supercond. 20, 576 (2010).CrossRefGoogle Scholar
24.Malozemoff, A.P., Snitchler, G., Mawatari, Y., IEEE Trans. Appl. Supercond. 19, 3115 (2009).CrossRefGoogle Scholar
25.Amemiya, N., Jiang, Z., Nakahata, M., Yagi, M., Mukoyama, S., Kashima, N., Nagaya, S., Shiohara, Y., IEEE Trans. Appl. Supercond. 17, 1712 (2007).CrossRefGoogle Scholar
26.Eickemeyer, J., Huhne, R., Guth, A., Rodig, C., Gaitzsch, U., Freudenberger, J., Schultz, L., Holzapfel, B., Supercond. Sci. Technol. 23, 085012 (2010).CrossRefGoogle Scholar
27.Wilson, M., Superconducting Magnets (Clarendon, Oxford, UK, 1983).Google Scholar
28.Clem, J.R., Phys. Rev. B 77, 134506 (2008).CrossRefGoogle Scholar
29.Masur, L., Podtburg, E., Buczek, D., Carter, W., Daly, D., Kosasih, U., Loong, S.-J., Manwiller, K., Parker, D., Miles, P., Tanner, M., Scudiere, J., Adv. Cryogen. Eng. 46, 871 (2000).Google Scholar
30.Clickner, C.C., Ekin, J.W., Cheggour, N., Thieme, C.L.H., Qiao, Y., Xie, Y.-Y., Goyal, A., Cryogenics 46, 432 (2006).CrossRefGoogle Scholar
31.van der Laan, D.C., Ekin, J., Appl. Phys. Lett. 90, 0525061 (2007).CrossRefGoogle Scholar
32.Rupich, M.W., Li, X., Thieme, C., Sathyamurthy, S., Fleshler, S., Tucker, D., Thompson, E., Schreiber, J., Lynch, J., Buczek, D., DeMoranville, K., Inch, J., Cedrone, P., Slack, J., Supercond. Sci. Technol. 23, 014015 (2010).CrossRefGoogle Scholar
33.Kim, H.M., Jankowski, J., Lee, H., Bascuñan, J., Iwasa, Y., Fleshler, S., IEEE Trans. Appl. Supercond. 14, 1290 (2004).CrossRefGoogle Scholar
34.Selvamanickam, V., Knoll, A., Xie, Y., Li, Y., Chen, Y., Reeves, J., Xiong, X., Qiao, Y., Salagaj, T., Lenseth, K., Hazelton, D., Reis, C., Yumura, H., Weber, C., IEEE Trans. Appl. Supercond. 15, 2596 (2005).CrossRefGoogle Scholar
35.Voccio, J., King, C., Aized, D., Thieme, C., MacDonald, T., Snitchler, G., Gamble, B., Malozemoff, A.P., IEEE Trans. Appl. Supercond. 17, 1591 (2007).CrossRefGoogle Scholar
36.Malozemoff, A.P., Annavarapu, S., Fritzemeier, L., Li, Q., Prunier, V., Rupich, M., Thieme, C., Zhang, W., Goyal, A., Paranthaman, M., Lee, D.F., Supercond. Sci. Technol. 13, 473 (2000).CrossRefGoogle Scholar