Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T21:55:45.711Z Has data issue: false hasContentIssue false

Electrochemical metallization cells—blending nanoionics into nanoelectronics?

Published online by Cambridge University Press:  17 February 2012

Wei Lu
Affiliation:
University of Michigan, USA; wluee@umich.edu
Doo Seok Jeong
Affiliation:
Korea Institute of Science and Technology, Seoul, South Korea; dsjeong@kist.re.kr
Michael Kozicki
Affiliation:
Arizona State University, USA; michael.kozicki@asu.edu
Rainer Waser
Affiliation:
Forschungszentrum Jülich, Germany; r.waser@fz-juelich.de
Get access

Abstract

A range of material systems exist in which nanoscale ionic transport and redox reactions provide the essential mechanisms for memristive switching. One class relies on mobile cations, which are easily created by electrochemical oxidation of the corresponding electrode metal, transported in the insulating layer, and reduced at the inert counterelectrode. These devices are termed electrochemical metallization (ECM) memories, also called conductive bridge random access memories. The memristive characteristics of the ECM cells provide opportunities for circuit design and computational concepts that go beyond those in traditional complementary metal oxide semiconductor (CMOS) technology. Passive memory arrays open up paths toward ultradense and 3D stackable memory and logic gate arrays. Furthermore, the multivalued conductance characteristics allow for potential exploitation of the cells as synapses in neuromorphic circuits in future energy efficient high-performance computer architectures. Despite exciting results obtained in recent years, many challenges have to be met before these physical effects can be turned into competitive industrial technology. Here, we briefly review the basic working principle, the different possible and potential material combinations, and the fundamental electrochemical processes in ECM cells and their implications for device operations. The prospects of ECM-based resistive random access memory as an emerging memory technology are also reviewed in terms of switching speed and scalability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.International Technology Roadmap for Semiconductors (ITRS), 2010 Edition; www.itrs.net/Links/2010ITRS/Home2010.htm.Google Scholar
2.Chung, A., Deen, J., Lee, J.S., Meyyappan, M., Nanotechnology 21, 412001 (2010).CrossRefGoogle Scholar
3.Burr, G.W., Kurdi, B.N., Scott, J.C., Lam, C.H., Gopalakrishnan, K., Shenoy, R.S., IBM J. Res. Dev. 52, 449 (2008).CrossRefGoogle Scholar
4.Hirose, Y., Hirose, H., J. Appl. Phys. 47, 2767 (1976).CrossRefGoogle Scholar
5.Waser, R., Dittmann, R., Staikov, G., Szot, K., Adv. Mater. 21, 2632 (2009).CrossRefGoogle Scholar
6.Waser, R., Aono, M., Nat. Mater. 6, 833 (2007).CrossRefGoogle Scholar
7.Chua, L.O., IEEE Trans. Circuit Theory 18, 507 (1971).CrossRefGoogle Scholar
8.Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S., Nature 453, 80 (2008).CrossRefGoogle Scholar
9.Valov, I., Waser, R., Jameson, J.R., Kozicki, M.N., Nanotechnology 22, 254003 (2011).CrossRefGoogle Scholar
10.Schindler, C., Staikov, G., Waser, R., Appl. Phys. Lett. 94, 072109 (2009).CrossRefGoogle Scholar
11.Bruchhaus, R., Honal, M., Symanczyk, R., Kund, M., J. Electrochem. Soc. 156, H729 (2009).CrossRefGoogle Scholar
12.Symanczyk, R., Bruchhaus, R., Dittrich, R., Kund, M., IEEE Electron Device Lett. 30, 876 (2009).CrossRefGoogle Scholar
13.Russo, U., Kamalanathan, D., Ielmini, D., Lacaita, A.L., Kozicki, M.N., IEEE Trans. Electron Devices 56, 1040 (2009).CrossRefGoogle Scholar
14.Kamalanathan, D., Russo, U., Ielmini, D., Kozicki, M.N., IEEE Electron Device Lett. 30, 553 (2009).CrossRefGoogle Scholar
15.Kozicki, M.N., Balakrishnan, M., Gopalan, C., Ratnakumar, C., Mitkova, M., 2005 Proc. Non-Volatile Memory Tech. Symp. 83 (2005).CrossRefGoogle Scholar
16.Kozicki, M.N., Gopalan, C., Balakrishnan, M., Park, M., Mitkova, M., 2004 Proc. Non-Volatile Memory Tech. Symp. 10 (2004).CrossRefGoogle Scholar
17.Balakrishnan, M., Kozicki, M.N., Gopalan, C., Mitkova, M., Device Research Conf. Digest 47 (2005).CrossRefGoogle Scholar
18.Kamalanathan, D., Baliga, S., Thermadam, S.C.P., Kozicki, M., Proc. Non-Volatile Memory Tech. Symp. 90 (2007).Google Scholar
19.Gopalan, C., Ma, Y., Gallo, T., Wang, J., Runnion, E., Saenz, J., Koushan, F., Blanchard, P., Hollmer, S., Solid-State Electron. 58, 54 (2011).CrossRefGoogle Scholar
20.Kozicki, M.N., Mitkova, M., J. Non-Cryst. Solids 352, 567 (2006).CrossRefGoogle Scholar
21.Gilbert, N.E., Kozicki, M.N., IEEE J. Solid-State Circuits 42, 1383 (2007).CrossRefGoogle Scholar
22.Symanczyk, R., Balakrishnan, M., Gopalan, C., Happ, T., Kozicki, M.N., Kund, M., Mikolajick, T., Mitkova, M., Park, M., Pinnow, C.-U., Robertson, J., Ufert, K.-D., Proc. Non-Volatile Memory Tech. Symp. 17 (2003).Google Scholar
23.Kund, M., Beitel, G., Pinnow, C.U., Rohr, T., Schumann, J., Symanczyk, R., Ufert, K.D., Muller, G., IEDM Tech. Dig. 2005, 773 (2005).Google Scholar
24.Schindler, C., Meier, M., Waser, R., Kozicki, M.N., Proc. Non-Volatile Memory Tech. Symp. 81 (2007).Google Scholar
25.Kozicki, M.N., Park, M., Mitkova, M., IEEE Trans. Nanotechnol. 4, 331 (2005).CrossRefGoogle Scholar
26.Kozicki, M.N., Mitkova, M., Park, M., Balakrishnan, M., Gopalan, C., Superlattices Microstruct. 34, 459 (2003).CrossRefGoogle Scholar
27.Mitkova, M., Kozicki, M.N., J. Non-Cryst. Solids 299, 1023 (2002).CrossRefGoogle Scholar
28.Kim, C.J., Yoon, S.G., Choi, K.J., Ryu, S.O., Yoon, S.M., Lee, N.Y., Yu, B.G., J. Vac. Sci. Technol., B 24, 721 (2006).CrossRefGoogle Scholar
29.Choi, S.-J., Lee, J.-H., Bae, H.-J., Yang, W.-Y., Kim, T.-W., Kim, K.-H., IEEE Electron Device Lett. 30, 120 (2009).CrossRefGoogle Scholar
30.Pandian, R., Kooi, B.J., Palasantzas, G., De Hosson, J.T.M., Pauza, A., Appl. Phys. Lett. 91, 152103 (2007).CrossRefGoogle Scholar
31.Stratan, I., Tsiulyanu, D., Eisele, I., J. Optoelectron. Adv. Mater. 8, 2117 (2006).Google Scholar
32.van der Sluis, P., Appl. Phys. Lett. 82, 4089 (2003).CrossRefGoogle Scholar
33.Wang, Z., Griffin, P.B., McVittie, J., Wong, S., McIntyre, P.C., Nishi, Y., IEEE Electron Device Lett. 28, 14 (2007).CrossRefGoogle Scholar
34.Banno, N., Sakamoto, T., Hasegawa, T., Terabe, K., Aono, M., Jpn. J. Appl. Phys. 45, 3666 (2006).CrossRefGoogle Scholar
35.Kim, S.-W., Nishi, Y., Proc. Non-Volatile Memory Tech. Symp. 75 (2007).Google Scholar
36.Sakamoto, T., Banno, N., Iguchi, N., Kawaura, H., Sunamura, H., Fujieda, S., Terabe, K., Hasegawa, T., Aono, M., Symp. VLSI Tech. Dig. Tech. 38 (2007).Google Scholar
37.Kaeriyama, S., Sakamoto, T., Sunamura, H., Mizuno, M., Kawaura, H., Hasegawa, T., Terabe, K., Nakayama, T., Aono, M., IEEE J. Solid-State Circuits 40, 168 (2005).CrossRefGoogle Scholar
38.Sakamoto, T., Banno, N., Iguchi, N., Kawaura, H., Sunamura, H., Fujieda, S., Terabe, K., Hasegawa, T., Aono, M., Symp. VLSI Tech. Dig. Tech. 38 (2007).Google Scholar
39.Sakamoto, T., Lister, K., Banno, N., Hasegawa, T., Terabe, K., Aono, M., Appl. Phys. Lett. 91, 092110 (2007).CrossRefGoogle Scholar
40.Banno, N., Sakamoto, T., Fujieda, S., Aono, M., Fourth Annu. Int. Reliab. Symp. 707 (2008).Google Scholar
41.Tsuji, Y., Sakamoto, T., Banno, N., Hada, H., Aono, M., Appl. Phys. Lett. 96, 023504 (2010).CrossRefGoogle Scholar
42.Manhart, S., J. Phys. D 6, 82 (1973).CrossRefGoogle Scholar
43.Schindler, C., Thermadam, S.C.P., Waser, R., Kozicki, M.N., IEEE Trans. Electron Devices 54, 2762 (2007).CrossRefGoogle Scholar
44.Balakrishnan, M., Thermadam, S.C.P., Mitkova, M., Kozicki, M.N., 2006 Proc. Non-Volatile Memory Tech. Symp. 104 (2006).CrossRefGoogle Scholar
45.Schindler, C., Weides, M., Kozicki, M.N., Waser, R., Appl. Phys. Lett. 92, 122910 (2008).CrossRefGoogle Scholar
46.Kozicki, M.N., Gopalan, C., Balakrishnan, M., Mitkova, M., IEEE Trans. Nanotechnol. 5, 535 (2006).CrossRefGoogle Scholar
47.Abe, K., Tendulkar, M.P., Jameson, J.R., Griffin, P.B., Nomura, K., Fujita, S., Nishi, Y., Proc. Int. Conf. IC Design Tech. 203 (2008).Google Scholar
48.Tsunoda, K., Fukuzumi, Y., Jameson, J.R., Wang, Z., Griffin, P.B., Nishi, Y., Appl. Phys. Lett. 90, 113501 (2007).CrossRefGoogle Scholar
49.Li, Y.T., Long, S.B., Zhang, M.H., Liu, Q., Shao, L.B., Zhang, S., Wang, Y., Zuo, Q.Y., Liu, S., Liu, M., IEEE Electron Device Lett. 31, 117 (2010).Google Scholar
50.Meier, M., Schindler, C., Gilles, S., Rosezin, R., Rudiger, A., Kugeler, C., Waser, R., IEEE Electron Device Lett. 30, 8 (2009).CrossRefGoogle Scholar
51.Kuegeler, C., Nauenheim, C., Meier, M., Ruediger, A., Waser, R., Proc. Non-Volatile Memory Tech. Symp. 59 (2008).Google Scholar
52.Aratani, K., Ohba, K., Mizuguchi, T., Yasuda, S., Shiimoto, T., Tsushima, T., Sone, T., Endo, K., Kouchiyama, A., Sasaki, S., Maesaka, A., Yamada, N., Narisawa, H., IEDM Tech. Dig. 2007 783 (2007).Google Scholar
53.Jo, S.H., Kim, K.H., Lu, W., Nano Lett. 9, 870 (2009).CrossRefGoogle Scholar
54.Jo, S.H., Lu, W., Nano Lett. 8, 392 (2008).CrossRefGoogle Scholar
55.Kim, K.H., Jo, S.H., Gaba, S., Lu, W., Appl. Phys. Lett. 96, 053106 (2010).CrossRefGoogle Scholar
56.Snell, A.J., Lecomber, P.G., Hajto, J., Rose, M.J., Owen, A.E., Osborne, I.S., J. Non-Cryst. Solids 137, 1257 (1991).CrossRefGoogle Scholar
57.Soni, R., Meier, M., Ruediger, A., Hollaender, B., Kuegeler, C., Waser, R., Microelectron. Eng. 86, 1054 (2009).CrossRefGoogle Scholar
58.Rahaman, S.Z., Maikap, S., Proc. IEEE Int. Memory Workshop 70 (2010).Google Scholar
59.Yi, J., Kim, S.W., Nishi, Y., Hwang, Y.T., Chung, S.W., Hong, S.J., Park, S.W., Proc. Non-Volatile Memory Technology Symp. 32 (2008).Google Scholar
60.West, W.C., Sieradzki, K., Kardynal, B., Kozicki, M.N., J. Electrochem. Soc. 145, 2971 (1998).CrossRefGoogle Scholar
61.Kozicki, M.N., West, W.C., U.S. Patent No. 5,761,115 (1998).Google Scholar
62.Chen, A., 2008 Proc. Non-Volatile Memory Tech. Symp. 27 (2008).Google Scholar
63.Dietrich, S., Angerbauer, M., Ivanov, M., Gogl, D., Hoenigschmid, H., Kund, M., Liaw, C., Markert, M., Symanczyk, R., Altimime, L., Bournat, S., Mueller, G., IEEE J. Solid-State Circuits 42, 839 (2007).CrossRefGoogle Scholar
64.Jo, S.H., Kim, K.H., Lu, W., Nano Lett. 9, 496 (2009).CrossRefGoogle Scholar
65.Terabe, K., Hasegawa, T., Nakayama, T., Aono, M., Nature 433, 47 (2005).CrossRefGoogle Scholar
66.Jameson, J.R., Gilbert, N., Koushan, F., Saenz, J., Wang, J., Hollmer, S., Kozicki, M.N., Appl. Phys. Lett. 99, 063506 (2011).CrossRefGoogle Scholar
67.Schindler, C., Valov, I., Waser, R., Phys. Chem. Chem. Phys. 11, 5974 (2009).CrossRefGoogle Scholar
68.Lee, M.J., Seo, S., Kim, D.C., Ahn, S.E., Seo, D.H., Yoo, I.K., Baek, I.G., Kim, D.S., Byun, I.S., Kim, S.H., Hwang, I.R., Kim, J.S., Jeon, S.H., Park, B.H., Adv. Mater 19, 73 (2007).CrossRefGoogle Scholar
69.Ahn, S.E., Kang, B.S., Kim, K.H., Lee, M.J., Lee, C.B., Stefanovich, G., Kim, C.J., Park, Y., IEEE Electron Device Lett. 30, 550 (2009).Google Scholar
70.Cho, B., Kim, T.-W., Song, S., Ji, Y., Jo, M., Hwang, H., Jung, G.-Y., Lee, T., Adv. Mater. 22, 1228 (2010).CrossRefGoogle Scholar
71.Park, W.Y., Kim, G.H., Seok, J.Y., Kim, K.M., Song, S.J., Lee, M.H., Hwang, C.S., Nanotechnology, 21 (2010).Google Scholar
72.Puthentheradam, S., Schroder, D., Kozicki, M., Appl. Phys. A 102, 817 (2011).CrossRefGoogle Scholar
73.Linn, E., Rosezin, R., Kugeler, C., Waser, R., Nat. Mater. 9, 403 (2010).CrossRefGoogle Scholar
74.Rosezin, R., Linn, E., Nielen, L., Kuegeler, C., Bruchhaus, R., Waser, R., IEEE Electron Device Lett. 32, 191 (2011).CrossRefGoogle Scholar
76.Wang, W., Gibby, A., Wang, Z., Chen, T.W., Fujita, S., Griffin, P., Nishi, Y., Wong, S., IEDM Tech. Dig. 2006 539 (2006).Google Scholar
77.Strukov, D.B., Likharev, K.K., Nanotechnology 16, 888 (2005).CrossRefGoogle Scholar
78.Swaroop, B., West, W.C., Martinez, G., Kozicki, M.N., Akers, L.A., Proc. Int. Symp. Circuits and Systems 3, 33 (1998).Google Scholar
79.Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W., Nano Lett. 10, 1297 (2010).CrossRefGoogle Scholar
80.Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K., Aono, M., Nat. Mater. 10, 591 (2011).CrossRefGoogle Scholar