Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T21:54:41.019Z Has data issue: false hasContentIssue false

Electronic Mayonnaise: Uniting the Sciences of “Hard” and “Soft” Matter

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

“Soft” condensed-matter science (also known as colloid chemistry) has revealed the nearly zoological complexity of long-lived structures that can arise from the competing interactions working in concert with thermal fluctuations both near and far from equilibrium. “Hard” condensed-matter science has revealed the stark beauty of elementary excitations shimmering on a placid quantum Fermi sea. The study of strongly correlated electronic states of matter is forcing us to unify these often disparate branches of materials science. Explaining confusing phenomena occurring in high-temperature superconductors and related materials seems to require that long-lived electronic structures be generated largely on their own, but perhaps with a little help from lattice disorder.We will explain the fruitful analogy between such systems and classical colloidal systems such as mayonnaise. Ordered crystalline, striped, or checkerboard phases and striped glasses emerge as candidate forms of highly correlated matter that may explain many puzzling observations of electronic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Einstein, A., Ann. d. Physik 17 (1905) p. 891.Google Scholar
2.Einstein, A., Ann. d. Physik 17 (1905) p. 132.CrossRefGoogle Scholar
3.Einstein, A., Ann. d. Physik 17 (1905) p. 549.Google Scholar
4.Dagotto, E., Hotta, T., and Moreo, A., Physics Reports 344 (2001) p. 1.CrossRefGoogle Scholar
5.Thomson, J.C., Electrons in Liquid Ammonia (Oxford University Press, London, 1976).Google Scholar
6.Curro, N.J., Hammel, P.C., Suh, B.J., Hücker, M., Büchner, B., Ammerahl, U., and Revcolervschi, A., Phys. Rev. Lett. 85 (2000) p. 642.Google Scholar
7.Panagopoulos, C., Tallon, J.L., Rainford, B.D., Xiang, T., Cooper, J.R., and Scott, C.A., Phys. Rev. B 66 (2002) p. 064501.Google Scholar
8.Emery, V.J. and S Kivelson, A., Physica C 209 (1993) p. 597.CrossRefGoogle Scholar
9.Gompper, G. and Schick, M., Self-Assembling Amphiphilic Systems (Academic Press, New York, 1994).Google Scholar
10.Landau, L.D. and Zel'dovich, Ya.B., Acta Phys.-Chim. USSR 18 (1943) p. 194.Google Scholar
11.Mott, N.F., Proc. Phys. Soc. A 62 (1949) p. 416; N.F. Mott, Philos. Mag. 6 (1961) p. 287.CrossRefGoogle Scholar
12.Chitra, R. and Kotliar, G., Phys. Rev. Lett. 84 (2000) p. 3678.CrossRefGoogle Scholar
13.Deng, Z., Klein, M.L., and Martyna, G.J., J. Chem. Soc. Farad. Trans. 90 (1994) p. 2009.Google Scholar
14.Edwards, P.P., J. Supercond. 13 (2000) p. 933.Google Scholar
15.Ogg, R.A. Jr., Phys. Rev. 69 (1946) p. 243; R.A. Ogg Jr., Phys. Rev. 70 (1946) p. 93.Google Scholar
16.Bardeen, J., Cooper, L.N., and Schrieffer, J.R., Phys. Rev. 108 (1957) p. 1175.CrossRefGoogle Scholar
17.Schafroth, M.R., Phys. Rev. 96 (1954) p. 1442.Google Scholar
18.Cho, J.H., Chou, F.C., and Johnston, D.C., Phys. Rev. Lett. 70 (1993) p. 222.Google Scholar
19.Tranquada, J.M., Sternlieb, B.J., Axe, J.D., Nakamura, Y., and Uchida, S., Nature 375 (1995) p. 561.CrossRefGoogle Scholar
20.Schmalian, J. and Wolynes, P.G., Phys. Rev. Lett. 85 (2000) p. 836.CrossRefGoogle Scholar
21.Monasson, R., Phys. Rev. Lett. 75 (1995) p. 2847.Google Scholar
22.Park, T., Nussinov, Z., Hazzard, K.R.A., Sidorov, V.A., Balatsky, A.V., Sarrao, J.L., Cheong, S.-W., Hundley, M.F., Jia, J.-S., and Thomson, J.D., Phys. Rev. Lett. 94 017002(2005).Google Scholar
23.Wu, S., Westfahl, H., Schmalian, J., and Wolynes, P.G., Chem. Phys. Lett. 359 (2002) p. 1.Google Scholar
24.Panagopoulos, C. and Dobrosavljevic, V., “Self-Generated Electronic Heterogeneity and Quantum Glassiness in the High Temperature Superconductors,” preprint, cond-mat/0410111 (accessed April 2005).Google Scholar
25.Phillips, J.C., Proc. Natl. Acad. Sciences USA 94 (1997) p. 10532.Google Scholar