Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T08:01:59.288Z Has data issue: false hasContentIssue false

Energy science of clathrate hydrates: Simulation-based advances

Published online by Cambridge University Press:  22 March 2011

Amadeu K. Sum
Affiliation:
Colorado School of Mines, USA; asum@mines.edu
David T. Wu
Affiliation:
Colorado School of Mines, USA; dwu@mines.edu
Kenji Yasuoka
Affiliation:
yasuoka@mech.keio.ac.jp
Get access

Abstract

The energy science of clathrate hydrates is a rapidly expanding field, with high-performance computing (HPC) playing an ever-growing role to help understand the molecular processes and properties that drive clathrate hydrates to nucleate and grow into crystalline, amorphous, or mixed structures, their non-stoichiometric nature upon formation, the formation mechanism from homogeneous and heterogeneous nucleation, and their stability and limits of metastability. Many of the questions that HPC can help to answer about hydrates are intractable experimentally because of the difficulty of measurements at the length (nanometers) and time (nanoseconds) scales imposed by the fundamental phenomena at the molecular level. At the same time, the length and time scales that are accessible by simulations pose limitations on what can be studied (e.g., phase equilibria and metastability, nucleation mechanisms, non-stoichiometry) and how it can be studied (e.g., Monte Carlo, molecular dynamics, metadynamics, transition path sampling, thermodynamic integration). Ultimately, the energy science of clathrate hydrates will benefit from HPC by gaining insight into the detailed mechanism for formation, dissociation, and stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Boswell, R., Science 325, 957 (2009).CrossRefGoogle Scholar
2.Graue, A., Kvamme, B., Baldwin, B.A., Stevens, J., Howard, J., Aspenes, E., Ersland, G., Husebø, J., Zornes, D., SPE J. 13, 146 (2008).CrossRefGoogle Scholar
3.Sugahara, T., Haag, J.C., Prasad, P.S.R., Warntjes, A.A., Sloan, E.D., Sum, A.K., Koh, C.A., J. Am. Chem. Soc. 131, 14616 (2009).CrossRefGoogle Scholar
4.Sugahara, T., Haag, J.C., Warntjes, A.A., Prasad, P.S.R., Sloan, E.D., Koh, C.A., Sum, A.K., J. Phys. Chem. C 114, 15218 (2010).CrossRefGoogle Scholar
5.Nogami, T., Watanabe, S., in Proc. Int. Petroleum Tech. Conf. (IPTC 12880), Kuala Lumpur, Malaysia, 35 December 2008.Google Scholar
6.Ogawa, T., Ito, T., Watanabe, K., Tahara, K., Hiraoka, R., Ochiai, J., Ohmura, R., Mori, Y.H., Appl. Therm. Eng. 26, 2157 (2006).CrossRefGoogle Scholar
7.Fournaison, L., Delahaye, A., Chatti, I., Petitet, J.P., Ind. Eng. Chem. Res. 43, 6521 (2004).CrossRefGoogle Scholar
8.Sloan, E.D., Koh, C.A., Clathrate Hydrates of Natural Gases (CRC Press, Boca Raton, FL, 2008).Google Scholar
9.van der Waals, J.H., Platteeuw, J.C., Adv. Chem. Phys. 2, 1 (1959).Google Scholar
10.Conde, M.M., Vega, C., J. Chem. Phys. 133, 064507 (2010).CrossRefGoogle Scholar
11.Jensen, L., Thomsen, K., von Solms, N., Wierzchowski, S., Walsh, M.R., Koh, C.A., Sloan, E.D., Wu, D.T., Sum, A.K., J. Phys. Chem. B 114, 5775 (2010).CrossRefGoogle Scholar
12.Baez, L.U., Clancy, P.. Ann. N.Y. Acad. Sci. 715, 177 (1994).CrossRefGoogle Scholar
13.Walsh, M.R., Koh, C.A., Sloan, E.D., Sum, A.K., Wu, D.T., Science 326, 1095 (2009).CrossRefGoogle Scholar
14.Matsumoto, M., Saito, S., Ohmine, I., Nature 416, 409 (2002).CrossRefGoogle Scholar
15.Zhang, J., Hawtin, R.W., Yang, Y., Nakagava, E., Rivero, M., Choi, S.K., Rodger, P.M., J. Phys. Chem. B 112, 10608 (2008).CrossRefGoogle Scholar
16.Moon, C., Hawtin, R.W., Rodger, P.M., Faraday Disc. 136, 367 (2007).CrossRefGoogle Scholar
17.Moon, C., Taylor, P.C., Rodger, P.M., J. Am. Chem. Soc. 125, 4706 (2003).CrossRefGoogle Scholar
18.Radhakrishnan, R., Trout, B.L., J. Chem. Phys. 117, 1786 (2002).CrossRefGoogle Scholar
19.Jacobson, L.C., Hujo, W., Molinero, V., J. Am. Chem. Soc. 132, 11806 (2010).CrossRefGoogle Scholar
20.Tung, Y.-T., Chen, L.-J., Chen, Y.-P., Lin, S.-T., J. Phys. Chem. B 114, 10804 (2010).CrossRefGoogle Scholar
21.Liang, S., Kusalik, P.G., Chem. Phys. Lett. 494, 123 (2010).CrossRefGoogle Scholar
22.Frenkel, D., Smit, B., Understanding Molecular Simulation: From Algorithms to Applications, 2nd Edition (Academic Press, San Diego, 2001).Google Scholar
23.Chandler, D.W., J. Chem. Phys. 69, 2959 (1978).CrossRefGoogle Scholar
24.Dellago, C., Bolhuis, P.G., Csajka, F.S., Chandler, D., J. Chem. Phys. 108, 1964 (1998).CrossRefGoogle Scholar
25.Peters, B., Zimmerman, N., Beckham, G.T., Tester, J.W., Trout, B.L., J. Am. Chem. Soc. 130, 17342 (2008).CrossRefGoogle Scholar