Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T05:35:25.604Z Has data issue: false hasContentIssue false

Energy-harvesting materials for smart fabrics and textiles

Published online by Cambridge University Press:  09 March 2018

Russel Torah
Affiliation:
Department of Electronics and Computer Science, University of Southampton, UK; rnt@soton.ac.uk
Jake Lawrie-Ashton
Affiliation:
Department of Electronics and Computer Science, University of Southampton, UK; Jla1g13@soton.ac.uk
Yi Li
Affiliation:
Department of Electronics and Computer Science, University of Southampton, UK; yi.li@soton.ac.uk
Sasikumar Arumugam
Affiliation:
Department of Electronics and Computer Science, University of Southampton, UK; S.Arumugam@soton.ac.uk
Henry A. Sodano
Affiliation:
Department of Aerospace Engineering, Department of Materials Science and Engineering, Department of Macromolecular Science and Engineering, University of Michigan, USA; hsodano@umich.edu
Steve Beeby
Affiliation:
Department of Electronics and Computer Science, University of Southampton, UK; spb@soton.ac.uk
Get access

Abstract

This article reviews materials developed to enable energy harvesting from textiles. It includes energy harvesting from mechanical, thermal, and light sources, and covers materials employed into yarns that can be woven into the textile and films that are deposited onto the surface of the textile. The textile places challenging constraints on the materials, for example, by limiting processing temperatures to typically less than 150°C and presenting a rough, inconsistent surface profile. Example materials include a screen-printable low-temperature composite lead zirconate titanate polymer film and poly(vinylidene fluoride) polymer fibers, both of which have been shown to harvest mechanical energy from textiles. Thermoelectric solutions demonstrated thus far are limited and challenging to implement within a textile. Photovoltaic solutions include organic and dye-sensitized solar cells fabricated into functionalized yarns and as films spray-coated onto textiles. While numerous suitable example materials and textile devices have been demonstrated, work is still needed to develop these into practical energy-harvesting solutions.

Type
Materials for Energy Harvesting
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yang, K., Torah, R., Wei, Y., Beeby, S., Tudor, J., Text. Res. J. 83, 2023 (2013).CrossRefGoogle Scholar
Anton, S.R., Sodano, H.A., Smart. Mater. Struct. 16, R1 (2007).CrossRefGoogle Scholar
Liu, W., Ren, X., Phys. Rev. Lett. 103, 257602 (2009).CrossRefGoogle Scholar
Lin, Y., Sodano, H., Adv. Funct. Mater. 19, 592 (2009).CrossRefGoogle Scholar
Lin, Y., Shaffer, J.W., Sodano, H.A., Smart Mater. Struct. 19, 124004 (2010).CrossRefGoogle Scholar
Bowland, C., Zhou, Z., Sodano, H.A., Adv. Funct. Mater. 24, 6303 (2014).CrossRefGoogle Scholar
Qin, Y., Wang, X., Wang, Z.L., Nature 451, 809 (2008).CrossRefGoogle Scholar
Malakooti, M.H., Patterson, B.A., Hwang, H.-S., Sodano, H.A., Energy Environ. Sci. 9, 634 (2016).CrossRefGoogle Scholar
Wu, W., Bai, S., Yuan, M., Qin, Y., Wang, Z.L., Jing, T., ACS Nano 6, 6231 (2012).CrossRefGoogle Scholar
Zeng, W., Tao, X.M., Chen, S., Shang, S., Chan, H.L.W., Choy, S.H., Energy Environ. Sci. 6, 2631 (2013).CrossRefGoogle Scholar
Hadimani, R.L., Bayramol, D.V., Sion, N., Shah, T., Qian, L., Shi, S., Siores, E., Smart Mater. Struct. 22, 075017 (2013).CrossRefGoogle Scholar
Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., Siores, E., Energy Environ. Sci. 7, 1670 (2014).CrossRefGoogle Scholar
Persano, L., Dagdeviren, C., Su, Y., Zhang, Y., Girardo, S., Pisignano, D., Huang, Y., Rogers, J.A., Nat. Commun. 4, 1633 (2013).CrossRefGoogle Scholar
Bhavanasi, V., Kumar, V., Parida, K., Wang, J., Lee, P.S., ACS Appl. Mater. Interfaces 8, 521 (2016).CrossRefGoogle Scholar
Elkjaer, K., Astafiev, K., Ringgaard, E., Zawada, T., Proc. Annu. Conf. Prognostics Health Mgmt. Soc. (New Orleans, October 2013), p. 372.Google Scholar
Almusallam, A., Luo, Z., Komolafe, A., Yang, K., Robinson, A., Torah, R., Beeby, S., Nano Energy 33, 146 (2017).CrossRefGoogle Scholar
Zhou, Z., Tang, H., Sodano, H.A., Adv. Mater. 26, 7547 (2014).CrossRefGoogle Scholar
Zhou, Z., Bowland, C.C., Malakooti, M., Tang, H., Sodano, H.A., Nanoscale 8, 5098 (2016).CrossRefGoogle ScholarPubMed
Solvay, “Solvene EAP for Printed Organic Electronics,” http://www.solvay.com/en/binaries/Solvene_EAP_for_Printed_Electronics_EN-220711.pdf (accessed October 24, 2017).Google Scholar
Goldsmid, H.J., Introduction to Thermoelectricity (Springer-Verlag, Berlin, 2010).CrossRefGoogle Scholar
Alam, H., Ramakrishna, S., Nano Energy 2, 190 (2013).CrossRefGoogle Scholar
Cowen, L.M., Atoyo, J., Carnie, M.J., Baran, D., Schroeder, B.C., ECS J. Solid State Sci. Technol. 6, N3080 (2017).CrossRefGoogle Scholar
Tian, R., Wan, C., Hayashi, N., Aoai, T., Koumoto, K., MRS Bull. 43 (3), xxx (2018).CrossRefGoogle Scholar
Roundy, S., Trolier-McKinstry, S., MRS Bull. 43 (3), xxx (2018).CrossRefGoogle Scholar
Leonov, V., Van Hoof, C., Vullers, R.J., Proc. Sixth Int. Workshop Wearable Implant. Body Sens. Netw. (IEEE, Berkeley, CA, 2009), p. 195.Google Scholar
Leonov, V., IEEE Sens. J. 13, 2284 (2013).CrossRefGoogle Scholar
Orrill, M., LeBlanc, S., J. Appl. Polym. Sci. 134, 44256 (2017).CrossRefGoogle Scholar
Cao, Z., Tudor, M.J., Torah, R.N., Beeby, S.P., IEEE Trans. Electron Devices 63, 4024 (2016).CrossRefGoogle Scholar
Kim, G.H., Shao, L., Zhang, K., Pipe, K.P., Nat. Mater. 12, 719 (2013).CrossRefGoogle Scholar
Yadav, A., Pipe, K., Shtein, M., J. Power Sources 175, 909 (2008).CrossRefGoogle Scholar
Schubert, M.B., Werner, J.H., Mater. Today 9, 42 (2006).CrossRefGoogle Scholar
Bedeloglu, A., Jimenez, P., Demir, A., Bozkurt, Y., Maser, W.K., Sariciftci, N.S., J. Text. Inst. 102, 857 (2011).CrossRefGoogle Scholar
Lee, S., Lee, Y., Park, J., Choi, D., Nano Energy 9, 88 (2014).CrossRefGoogle Scholar
Arumugam, S., Li, Y., Senthilarasu, S., Torah, R., Kanibolotsky, A.L., Inigo, A.R., Skabara, P.J., Beeby, S.P., J. Mater. Chem. A 4, 5561 (2016).CrossRefGoogle Scholar
Zou, D., Lv, Z., Cai, X., Hou, S., Nano Energy 1, 273 (2012).CrossRefGoogle Scholar
O’Connor, B., Pipe, K.P., Shtein, M., Appl. Phys. Lett. 92, 193306 (2008).CrossRefGoogle Scholar
Lee, M.R., Eckert, R.D., Forberich, K., Dennler, G., Brabec, C.J., Gaudiana, R.A., Science 324, 232 (2009).CrossRefGoogle Scholar
Yang, Z., Deng, J., Sun, X., Li, H., Peng, H., Adv. Mater. 26, 2643 (2014).CrossRefGoogle Scholar
Zhang, N., Chen, J., Huang, Y., Guo, W., Yang, J., Du, J., Fan, X., Tao, C., Adv. Mater. 28, 263 (2016).CrossRefGoogle ScholarPubMed
Liu, J., Li, Y., Arumugam, S., Tudor, J., Beeby, S., “Screen Printed Dye-Sensitized Solar Cells (DSSCs) on Woven Polyester Cotton Fabric for Wearable Energy Harvesting Applications,” presented at the 1st International Conference on Advanced Energy Materials and 8th International Conference on Advanced Nanomaterials, Guildford, UK, September 12–14, 2016.Google Scholar
Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H., Seok, S.I., Science 356, 1376 (2017).CrossRefGoogle Scholar
Du, Y., Cai, H., Bao, X., Xing, Z., Wu, Y., Xu, J., Huang, L., Ni, J., Li, J., Zhang, J., ACS Sustain. Chem. Eng. 6 (1), 1083 (2018).CrossRefGoogle Scholar
Kim, B.J., Kim, D.H., Lee, Y.-Y., Shin, H.-W., Han, G.S., Hong, J.S., Mahmood, K., Ahn, T.K., Joo, Y.-C., Hong, K.S., Park, N.-G., Lee, S., Jung, H.S., Energy Environ. Sci. 8, 916 (2015).CrossRefGoogle Scholar
Hwang, K., Jung, Y.-S., Heo, Y.-J., Scholes, F.H., Watkins, S.E., Subbiah, J., Jones, D.J., Kim, D.-Y., Vak, D., Adv. Mater. 27, 1241 (2015).CrossRefGoogle Scholar
Qiu, L., Deng, J., Lu, X., Yang, Z., Peng, H., Angew. Chem. Int. Ed. Engl. 53, 10425 (2014).CrossRefGoogle Scholar
Li, R., Xiang, X., Tong, X., Zou, J., Li, Q., Adv. Mater. 27, 3831 (2015).CrossRefGoogle Scholar