Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T06:23:13.798Z Has data issue: false hasContentIssue false

The evolution of nitrocellulose as a material for bioassays

Published online by Cambridge University Press:  12 April 2013

Gina E. Fridley
Affiliation:
Bioengineering Department, University of Washington; gfridley@uw.edu
Carly A. Holstein
Affiliation:
Bioengineering Department, University of Washington; cholst@uw.edu
Shefali B. Oza
Affiliation:
Bioengineering Department, University of Washington; shefali@uw.edu
Paul Yager
Affiliation:
Bioengineering Department, University of Washington; yagerp@uw.edu
Get access

Abstract

The need to improve health outcomes in the developing world and to moderate healthcare costs in developed countries has resulted in an increased interest in sophisticated, inexpensive, and instrument-free point-of-care diagnostics using porous materials. One major segment of the paper-based diagnostics effort is focused on developing high-performance point-of-care tests using porous nitrocellulose membranes. This review provides a perspective on the nature, history, and future of nitrocellulose-based assays. Beginning as a protein blotting substrate, porous nitrocellulose membranes have grown to be the most commonly used lateral flow substrate and are the primary membranes used in two-dimensional paper networks for user-friendly multistep assays. In addition to the historical context, we examine assay development considerations, such as the physics of flow in porous media, reagent deposition and storage, and detection methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors all contributed equally to this article.

References

Martin, R.S., Colombi, A., Am. J. Nephrol. 12, 196 (1992).CrossRefGoogle Scholar
Theisen, E., SMPTE Motion Imaging J. 20, 259 (1933).Google Scholar
Falkowitz, A.L., Piech, F.E., Ind. Eng. Chem. 48, 1326 (1956).CrossRefGoogle Scholar
Tonkinson, J.L., Stillman, B.A., Front. Biosci. 7, C1 (2002).Google Scholar
Ferry, J.D., Chem. Rev. 18, 373 (1936).CrossRefGoogle Scholar
Baker, R.W., Membrane Technology and Applications (Wiley, Chichester, UK, 2004).CrossRefGoogle Scholar
Zsigmondy, R., Bachmann, W., Z. Anorg. Allg. Chem. 103, 119 (1918).CrossRefGoogle Scholar
Wong, R., Tse, H., Eds., Lateral Flow Immunoassay (Humana Press, New York, 2009).CrossRefGoogle Scholar
Nygaard, A.P., Hall, B.D., Biochem. Biophys. Res. Commun. 12, 98 (1963).CrossRefGoogle Scholar
Gillespie, D., Spiegelman, S., J. Mol. Biol. 12, 829 (1965).CrossRefGoogle Scholar
Flavell, R.A., Birfelder, E.J., Sanders, J.P.M., Borst, P., Eur. J. Biochem. 47, 535 (1974).CrossRefGoogle Scholar
Southern, E.M., J. Mol. Biol. 98, 503 (1975).CrossRefGoogle Scholar
Alwine, J.C., Kemp, D.J., Stark, G.R., PNAS 74, 5350 (1977).CrossRefGoogle Scholar
Towbin, H., Staehelin, T., Gordon, J., PNAS 76, 4350 (1979).CrossRefGoogle Scholar
Burnette, W.N., Anal. Biochem. 112, 195 (1981).CrossRefGoogle Scholar
Valkirs, G.E., Barton, R., Clin. Chem. 31, 1427 (1985).CrossRefGoogle Scholar
Ijsselmuiden, O.E., Herbrink, P., Meddens, M.J.M., Tank, B., Stolz, E., Vaneijk, R.V.W., J. Immunol. Methods 119, 35 (1989).CrossRefGoogle Scholar
O’Connell, R.J., Agan, B.K., Anderson, S.A., Malia, J.A., Michael, N.L., J. Clin. Microbiol. 44, 1831 (2006).CrossRefGoogle Scholar
Lafleur, L., Stevens, D., McKenzie, K., Ramachandran, S., Spicar-Mihalic, P., Singhal, M., Arjyal, A., Osborn, J., Kauffman, P., Yager, P., Lutz, B., Lab Chip 12, 1119 (2012).CrossRefGoogle Scholar
Chard, T., Hum. Reprod. 7, 701 (1992).CrossRefGoogle Scholar
Posthuma-Trumpie, G.A., Korf, J., van Amerongen, A., Anal. Bioanal. Chem. 393, 569 (2009).CrossRefGoogle Scholar
Fu, E., Kauffman, P., Lutz, B., Yager, P., Sens. Actuators, B 149, 325 (2010).CrossRefGoogle Scholar
Fu, E., Lutz, B., Kauffman, P., Yager, P., Lab Chip 10, 918 (2010).CrossRefGoogle Scholar
Fu, E., Liang, T., Houghtaling, J., Ramachandran, S., Ramsey, S.A., Lutz, B., Yager, P., Anal. Chem. 83, 7941 (2011).CrossRefGoogle Scholar
Fu, E.L., Ramsey, S., Kauffman, P., Lutz, B., Yager, P., Microfluid. Nanofluid. 10, 29 (2011).CrossRefGoogle Scholar
Fu, E., Liang, T., Spicar-Mihalic, P., Houghtaling, J., Ramachandran, S., Yager, P., Anal. Chem. 84, 4574 (2012).CrossRefGoogle Scholar
Lutz, B.R., Trinh, P., Ball, C., Fu, E., Yager, P., Lab Chip 11, 4274 (2011).CrossRefGoogle Scholar
Washburn, E.W., Phys. Rev. 17, 273 (1921).CrossRefGoogle Scholar
Darcy, H., Les fontaines publiques de la ville de Dijon (Dalmont, Paris, 1856).Google Scholar
Bird, R.B., Stewart, W.E., Lightfoot, E.N., Transport Phenomena, 2nd Edition (Wiley, New York, 2002).Google Scholar
Purcell, E.M., Am. J. Phys. 45, 3 (1977).CrossRefGoogle Scholar
Millipore Co., Rapid Lateral Flow Test Strips (Billerica, USA, 2008).Google Scholar
Osborn, J.L., Lutz, B., Fu, E., Kauffman, P., Stevens, D.Y., Yager, P., Lab Chip 10, 2659 (2010).CrossRefGoogle Scholar
Kauffman, P., Fu, E., Lutz, B., Yager, P., Lab Chip 10, 2614 (2010).CrossRefGoogle Scholar
Brash, J.L., Horbett, T.A., Eds., Proteins at Interfaces (ACS, Washington, DC, 1987).CrossRefGoogle Scholar
Horbett, T.A., Brash, J.L., Eds., Proteins at Interfaces II (ACS, Washington, DC, 1995).CrossRefGoogle Scholar
Vanoss, C.J., Good, R.J., Chaudhury, M.K., J. Chromatogr. 391, 53 (1987).CrossRefGoogle Scholar
Hoffman, W.L., Jump, A.A., J. Immunol. Methods 94, 191 (1986).CrossRefGoogle Scholar
Gonzalez-Macia, L., Morrin, A., Smyth, M.R., Killard, A.J., Analyst 135, 845 (2010).CrossRefGoogle Scholar
Yu, A., Shang, J., Cheng, F., Paik, B.A., Kaplan, J.M., Andrade, R.B., Ratner, D.M., Langmuir 28, 11265 (2012).CrossRefGoogle Scholar
Crowe, J.H., Carpenter, J.F., Crowe, L.M., Annu. Rev. Physiol. 60, 73 (1998).CrossRefGoogle Scholar
Garcia, E., Kirkham, J.R., Hatch, A.V., Hawkins, K.R., Yager, P., Lab Chip 4, 78 (2004).CrossRefGoogle Scholar
Draber, P., Draberova, E., Novakova, M., J. Immunol. Methods 181, 37 (1995).CrossRefGoogle Scholar
Chang, B.S., Beauvais, R.M., Dong, A.C., Carpenter, J.F., Arch. Biochem. Biophys. 331, 249 (1996).CrossRefGoogle Scholar
Mazzobre, M.F., Buera, M.D., Chirife, J., Food Sci. Technol.-Leb. 30, 324 (1997).CrossRefGoogle Scholar
Stevens, D.Y., Petri, C.R., Osborn, J.L., Spicar-Mihalic, P., McKenzie, K.G., Yager, P., Lab Chip 8, 2038 (2008).CrossRefGoogle Scholar
Elias, M.E., Elias, A.M., J. Mol. Liq. 83, 303 (1999).CrossRefGoogle Scholar
Abe, K., Kotera, K., Suzuki, K., Citterio, D., Anal. Bioanal. Chem. 398, 885 (2010).CrossRefGoogle Scholar
Fridley, G.E., Le, H.Q., Fu, E., Yager, P., Lab Chip 12, 4321 (2012).CrossRefGoogle Scholar
Poehling, K.A., Griffin, M.R., Dittus, R.S., Tang, Y.W., Holland, K., Li, H.J., Edwards, K.M., Pediatrics 110, 83 (2002).CrossRefGoogle Scholar
Cazacu, A.C., Greer, J., Taherivand, M., Demmler, G.J., J. Clin. Microbiol. 41, 2132 (2003).CrossRefGoogle Scholar
Carrilho, E., Phillips, S.T., Vella, S.J., Martinez, A.W., Whitesides, G.M., Anal. Chem. 81, 5990 (2009).CrossRefGoogle Scholar
Carrilho, E., Martinez, A.W., Whitesides, G.M., Anal. Chem. 81, 7091 (2009).CrossRefGoogle Scholar
Cheng, C.M., Martinez, A.W., Gong, J.L., Mace, C.R., Phillips, S.T., Carrilho, E., Mirica, K.A., Whitesides, G.M., Angew. Chem. Int. Ed. 49, 4771 (2010).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Butte, M.J., Whitesides, G.M., Angew. Chem. Int. Ed. 46, 1318 (2007).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Wiley, B.J., Gupta, M., Whitesides, G.M., Lab Chip 8, 2146 (2008).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Carrilho, E., Thomas, S.W., Sindi, H., Whitesides, G.M., Anal. Chem. 80, 3699 (2008).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Whitesides, G.M., PNAS 105, 19606 (2008).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E., Anal. Chem. 82, 3 (2008).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Nie, Z., Cheng, C.-M., Carrilho, E., Wiley, B.J., Whitesides, G.M., Lab Chip 10, 2499 (2010).CrossRefGoogle Scholar
Fridley, G.E., Le, H.Q., Fu, E., Yager, P., MicroTAS Conference, Okinawa, Japan (2012).Google Scholar
Wang, S., Zhao, X., Khimji, I., Akbas, R., Qiu, W., Edwards, D., Cramer, D.W., Ye, B., Demirci, U., Lab Chip 11, 3411 (2011).CrossRefGoogle Scholar
You, D.J., Park, T.S., Yoon, J., Biosens. Bioelec. 40, 180 (2013).CrossRefGoogle Scholar
Coskun, A.F., Wong, J., Khodadadi, D., Nagi, R., Tey, A., Ozcan, A., Lab Chip 13, 636 (2013).CrossRefGoogle Scholar