Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T12:43:39.652Z Has data issue: false hasContentIssue false

Femtosecond laser direct writing in transparent materials based on nonlinear absorption

Published online by Cambridge University Press:  06 December 2016

Li Jia Jiang
Affiliation:
Department of Electrical and Computer Engineering, University of Nebraska–Lincoln, USA; li.jia.jiang1985@gmail.com
Shoji Maruo
Affiliation:
Department of Mechanical Engineering and Materials Science, Graduate School of Engineering, Yokohama National University, Japan; maruo@ynu.ac.jp
Roberto Osellame
Affiliation:
Institute for Photonics and Nanotechnologies, Italian National Research Council; and Department of Physics, Polytechnic University of Milan, Italy; roberto.osellame@polimi.it
Wei Xiong
Affiliation:
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China; weixiong@hust.edu.cn
John H. Campbell
Affiliation:
Material Science Solutions, Inc., USA; campbelljh@comcast.net
Yong Feng Lu
Affiliation:
Department of Electrical and Computer Engineering, University of Nebraska–Lincoln, USA; ylu2@unl.edu
Get access

Abstract

Femtosecond laser direct writing (FsLDW) in transparent materials is a laser-based precise three-dimensional (3D) micro/nanofabrication method that has shown great potential for applications. The advantages of FsLDW originate in the nonlinear nature of absorption in the multiphoton absorption process. Over the past few years, transparent material micro/nanofabrication using FsLDW has seen several developments in materials and applications. Specifically, two-photon polymerization has been widely used as a precision direct-writing process for fabrication of polymeric 3D micro/nanostructures; internal/surface ablation of polymer 3D structures based on multiphoton absorption has been demonstrated and developed as a promising subtractive manufacturing technique; and femtosecond laser multiphoton modification in glass has been intensively studied for refractive-index change and generation of nanogratings and microvoids. This article describes the latest research on FsLDW in polymers and glasses with specific applications for large-dimension fabrication, microelectromechanical systems, microphotonics, and microfluidics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Toriumi, A., Herrmann, J.M., Kawata, S., Opt. Lett. 22, 555 (1997).Google Scholar
Lee, K.S., Kim, R.H., Yang, D.Y., Park, S.H., Prog. Polym. Sci. 33, 631 (2008).CrossRefGoogle Scholar
Zhou, X.Q., Hou, Y.H., Lin, J.Q., AIP Adv. 5, 030701 (2015).Google Scholar
Fischer, J., Wegener, M., Laser Photon. Rev. 7, 22 (2013).Google Scholar
Gan, Z.S., Cao, Y.Y., Evans, R.A., Gu, M., Nat. Commun. 4, 3061(2013).Google Scholar
Haske, W., Chen, V.W., Hales, J.M., Dong, W.T., Barlow, S., Marder, S.R., Perry, J.W., Opt. Express 15, 3426 (2007).Google Scholar
Li, Z.Q., Pucher, N., Cicha, K., Torgersen, J., Ligon, S.C., Ajami, A., Husinsky, W., Rosspeintner, A., Vauthey, E., Naumov, S., Scherzer, T., Stampfl, J., Liska, R., Macromolecules 46, 352 (2013).Google Scholar
Obata, K., El-Tamer, A., Koch, L., Hinze, U., Chichkov, B.N., Light Sci. Appl. 2, e116 (2013).Google Scholar
Wang, J., Xia, H., Xu, B.B., Niu, L.G., Wu, D., Chen, Q.D., Sun, H.B., Opt. Lett. 34, 581 (2009).Google Scholar
Ushiba, S., Shoji, S., Masui, K., Kuray, P., Kono, J., Kawata, S., Carbon 59, 283 (2013).CrossRefGoogle Scholar
Tong, M.H., Huang, N., Zhang, W., Zhou, Z.L., Ngan, A.H.W., Du, Y., Chan, B.P., Sci. Rep. 6, 20063 (2016).Google Scholar
Kaehr, B., Shear, J.B., Proc. Natl. Acad. Sci. U.S.A. 105, 8850 (2008).Google Scholar
Formanek, F., Takeyasu, N., Tanaka, T., Chiyoda, K., Ishikawa, A., Kawata, S., Opt. Express 14, 800 (2006).Google Scholar
Farrer, R.A., LaFratta, C.N., Li, L.J., Praino, J., Naughton, M.J., Saleh, B.E.A., Teich, M.C., Fourkas, J.T., J. Am. Chem. Soc. 128, 1796 (2006).Google Scholar
Ikegami, T., Stocker, M.P., Monaco, K., Fourkas, J.T., Maruo, S., Jpn. J. Appl. Phys. 51, 06FL17 (2012).Google Scholar
Ikegami, T., Ozawa, R., Stocker, M.P., Monaco, K., Fourkas, J.T., Maruo, S., J. Laser Micro/Nanoeng. 8, 6 (2013).Google Scholar
Wang, W.K., Sun, Z.B., Zheng, M.L., Dong, X.Z., Zhao, Z.S., Duan, X.M., J. Phys. Chem. C 115, 11275 (2011).Google Scholar
Daicho, Y., Murakami, T., Hagiwara, T., Maruo, S., Opt. Mater. Express 3, 875 (2013).Google Scholar
Bauer, J., Schroer, A., Schwaiger, R., Kraft, O., Nat Mater. 15, 438 (2016).Google Scholar
Tétreault, N., von Freymann, G., Deubel, M., Hermatschweiler, M., Pérez-Willard, F., John, S., Wegener, M., Ozin, G.A., Adv. Mater. 18, 457 (2006).Google Scholar
Maruo, S., “3D Molding Processes Based on Two-Photon Microfabrication,” SPIE Newsroom (2012), doi: 10.1117/2.1201211.004378.Google Scholar
Inada, M., Hiratsuka, D., Tatami, J., Maruo, S., Jpn. J. Appl. Phys. 48, 06FK01 (2009).Google Scholar
Torii, T., Inada, M., Maruo, S., Jpn. J. Appl. Phys. 50, 06GL15 (2011).Google Scholar
Monri, K., Maruo, S., Sens. Actuators A 200, 31 (2013).Google Scholar
Selimis, A., Mironov, V., Farsari, M., Microelectron. Eng. 132, 83 (2015).Google Scholar
Spivey, E.C., Ritschdorff, E.T., Connell, J.L., McLennon, C.A., Schmidt, C.E., Shear, J.B., Adv. Funct. Mater. 23, 333 (2013).Google Scholar
Sun, Y.-L., Dong, W.-F., Niu, L.-G., Jiang, T., Liu, D.-X., Zhang, L., Wang, Y.-S., Chen, Q.-D., Kim, D.-P., Sun, H.-B., Light Sci. Appl. 3, e129 (2014).Google Scholar
Torgersen, J., Qin, X.H., Li, Z., Ovsianikov, A., Liska, R., Stampfl, J., Adv. Funct. Mater. 23, 4542 (2013).Google Scholar
Zhang, Y.L., Chen, Q.D., Xia, H., Sun, H.B., Nano Today 5, 435 (2010).Google Scholar
Hohmann, J.K., Renner, M., Waller, E.H., von Freymann, G., Adv. Opt. Mater. 3, 1488 (2015).Google Scholar
von Freymann, G., Ledermann, A., Thiel, M., Staude, I., Essig, S., Busch, K., Wegener, M., Adv. Funct. Mater. 20, 1038 (2010).Google Scholar
Lindenmann, N., Balthasar, G., Hillerkuss, D., Schmogrow, R., Jordan, M., Leuthold, J., Freude, W., Koos, C., Opt. Express 20, 17667 (2012).Google Scholar
Gissibl, T., Thiele, S., Herkommer, A., Giessen, H., Nat. Photonics 10, 554 (2016).CrossRefGoogle Scholar
Malinauskas, M., Zukauskas, A., Purlys, V., Belazaras, K., Momot, A., Paipulas, D., Gadonas, R., Piskarskas, A., Gilbergs, H., Gaidukeviciute, A., Sakellari, I., Farsari, M., Juodkazis, S., J. Opt. UK 12, 124010 (2010).Google Scholar
Brasselet, E., Malinauskas, M., Zukauskas, A., Juodkazis, S., Appl. Phys. Lett. 97, 211108 (2010).Google Scholar
Maruo, S., Inoue, H., Appl. Phys. Lett. 89, 144101 (2006).CrossRefGoogle Scholar
Maruo, S., Takaura, A., Saito, Y., Opt. Express 17, 18525 (2009).Google Scholar
Wu, D., Niu, L.G., Wu, S.Z., Xu, J., Midorikawa, K., Sugioka, K., Lab Chip 15, 1515 (2015).CrossRefGoogle Scholar
Bückmann, T., Stenger, N., Kadic, M., Kaschke, J., Frölich, A., Kennerknecht, T., Eberl, C., Thiel, M., Wegener, M., Adv. Mater. 24, 2710 (2012).Google Scholar
Gattass, R.R., Mazur, E., Nat. Photonics 2, 219 (2008).Google Scholar
Osellame, R., Cerullo, G., Ramponi, R., Eds., Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics (Springer, Berlin, 2012), vol. 123.Google Scholar
Hayasaki, Y., Sugimoto, T., Takita, A., Nishida, N., Appl. Phys. Lett. 87, 031101 (2005).Google Scholar
Jiang, L., Campbell, J., Lu, Y., Bernat, T., Petta, N., Fusion Sci. Technol. 70, 295 (2016).Google Scholar
Sawada, H., Yabuuchi, T., Regan, S.P., Anderson, K., Wei, M.S., Betti, R., Hund, J., Key, M.H., Mackinnon, A.J., McLean, H.S., Paguio, R.R., Patel, P.K., Saito, K.M., Stephens, R.B., Wilks, S.C., Beg, F.N., High Energy Density Phys. 8, 180 (2012).Google Scholar
Falk, K., McCoy, C.A., Fryer, C.L., Greeff, C.W., Hungerford, A.L., Montgomery, D.S., Schmidt, D.W., Sheppard, D.G., Williams, J.R., Boehly, T.R., Benage, J.F., Phys. Rev. E 90, 033107 (2014).Google Scholar
Passoni, M., Zani, A., Sgattoni, A., Dellasega, D., Macchi, A., Prencipe, I., Floquet, V., Martin, P., Liseykina, T.V., Ceccotti, T., Plasma Phys. Control. Fusion 56, 045001 (2014).CrossRefGoogle Scholar
Thostenson, E.T., Chou, T.W., Adv. Mater. 18, 2837 (2006).Google Scholar
Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K., Carbon 44, 1624 (2006).Google Scholar
Grossiord, N., Loos, J., van Laake, L., Maugey, M., Zakri, C., Koning, C.E., Hart, A.J., Adv. Funct. Mater. 18, 3226 (2008).Google Scholar
Song, W.H., Zheng, Z., Tang, W.L., Wang, X.L., Polymer 48, 3658 (2007).Google Scholar
Park, C., Ounaies, Z., Watson, K.A., Crooks, R.E., Smith, J., Lowther, S.E., Connell, J.W., Siochi, E.J., Harrison, J.S., Clair, T.L.S., Chem. Phys. Lett. 364, 303 (2002).Google Scholar
Xiong, W., Liu, Y., Jiang, L.J., Zhou, Y.S., Li, D.W., Jiang, L., Silvain, J.F., Lu, Y.F., Adv. Mater. 28, 2002 (2016).Google Scholar
Guo, Q.C., Xiao, S.Z., Aumann, A., Jaeger, M., Chakif, M., Ghadiri, R., Esen, C., Ma, M.Y., Ostendorf, A., J. Laser Micro/Nanoeng. 7, 44 (2012).Google Scholar
Ushiba, S., Shoji, S., Masui, K., Kono, J., Kawata, S., Adv. Mater. 26, 5653 (2014).Google Scholar
Jiang, L.J., Zhou, Y.S., Xiong, W., Gao, Y., Huang, X., Jiang, L., Baldacchini, T., Silvain, J.-F., Lu, Y.F., Opt. Lett. 39, 3034 (2014).Google Scholar
Baskaran, D., Mays, J.W., Bratcher, M.S., Angew. Chem. Int. Ed. 43, 2138 (2004).Google Scholar
Xu, L., Fang, Z., Song, P.A., Peng, M., Plasma Process. Polym. 7, 785 (2010).Google Scholar
Borghese, F., Denti, P., Saija, R., Iati, M.A., Marago, O.M., Phys. Rev. Lett. 100, 163903 (2008).Google Scholar
Gomez, D., Tekniker, F., Goenaga, I., Lizuain, I., Ozaita, M., Opt. Eng. 44, 051105 (2005).Google Scholar
Korte, F., Serbin, J., Koch, J., Egbert, A., Fallnich, C., Ostendorf, A., Chichkov, B.N., Appl. Phys. A 77, 229 (2003).Google Scholar
Suriano, R., Kuznetsov, A., Eaton, S.M., Kiyan, R., Cerullo, G., Osellame, R., Chichkov, B.N., Levi, M., Turri, S., Appl. Surf. Sci. 257, 6243 (2011).Google Scholar
Xiong, W., Zhou, Y.S., He, X.N., Gao, Y., Mahjouri-Samani, M., Jiang, L., Baldacchini, T., Lu, Y.F., Light Sci. Appl. 1, e6 (2012).Google Scholar
Chichkov, B.N., Momma, C., Nolte, S., von Alvensleben, F., Tunnermann, A., Appl. Phys. A 63, 109 (1996).Google Scholar
Sun, H.B., Xu, Y., Juodkazis, S., Sun, K., Watanabe, M., Matsuo, S., Misawa, H., Nishii, J., Opt. Lett. 26, 325 (2001).Google Scholar
Zhou, G.Y., Gu, M., Opt. Lett. 31, 2783 (2006).Google Scholar
Gu, M., Jia, B.H., Li, J.F., Ventura, M.J., Laser Photon. Rev. 4, 414 (2010).Google Scholar
Fischer, P., McWilliam, A., Paterson, L., Brown, C.T.A., Sibbett, W., Dholakia, K., MacDonald, M.P., J. Opt. A Pure Appl. Opt. 9, S19 (2007).Google Scholar
Xiong, W., Zhou, Y., Hou, W., Jiang, L., Mahjouri-Samani, M., Park, J., He, X., Gao, Y., Fan, L., Baldacchini, T., Front. Optoelectron. 8, 351 (2015).Google Scholar
Zappe, H., Fundamentals of Micro-Optics (Cambridge University Press, New York, 2010).Google Scholar
Hnatovsky, C., Taylor, R.S., Rajeev, P.P., Simova, E., Bhardwaj, V.R., Rayner, D.M., Corkum, P.B., Appl. Phys. Lett. 87, 014104 (2005).Google Scholar
Davis, K.M., Miura, K., Sugimoto, N., Hirao, K., Opt. Lett. 21, 1729 (1996).Google Scholar
Flamini, F., Magrini, L., Rab, A.S., Spagnolo, N., D’Ambrosio, V., Mataloni, P., Sciarrino, F., Zandrini, T., Crespi, A., Ramponi, R., Osellame, R., Light Sci. Appl. 4, e354 (2015).Google Scholar
Shimotsuma, Y., Kazansky, P.G., Qiu, J.R., Hirao, K., Phys. Rev. Lett. 91, 247405 (2003).Google Scholar
Marcinkevicius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., Misawa, H., Nishii, J., Opt. Lett. 26, 277 (2001).Google Scholar
Paie, P., Bragheri, F., Vazquez, R.M., Osellame, R., Lab Chip 14, 1826 (2014).Google Scholar
Glezer, E.N., Mazur, E., Appl. Phys. Lett. 71, 882 (1997).Google Scholar
Della Valle, G., Osellame, R., Laporta, P., J. Opt. A Pure Appl. Opt. 11, 013001 (2008).Google Scholar
Eaton, S.M., Chen, W.J., Zhang, H.B., Iyer, R., Li, J.Z., Ng, M.L., Ho, S., Aitchison, J.S., Herman, P.R., J. Lightwave Technol. 27, 1079 (2009).Google Scholar
Marshall, G.D., Politi, A., Matthews, J.C.F., Dekker, P., Ams, M., Withford, M.J., O’Brien, J.L., Opt. Express 17, 12546 (2009).Google Scholar
Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R., Phys. Rev. Lett. 105, 200503 (2010).Google Scholar
Thomson, R.R., Kar, A.K., Allington-Smith, J., Opt. Express 17, 1963 (2009).Google Scholar
Thomson, R.R., Bookey, H.T., Psaila, N.D., Fender, A., Campbell, S., MacPherson, W.N., Barton, J.S., Reid, D.T., Kar, A.K., Opt. Express 15, 11691 (2007).Google Scholar
Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R., Phys. Rev. Lett. 108, 010502 (2012).Google Scholar
Beresna, M., Gecevicius, M., Kazansky, P.G., Adv. Opt. Photonics 6, 293 (2014).Google Scholar
Cheng, Y., Sugioka, K., Midorikawa, K., Masuda, M., Toyoda, K., Kawachi, M., Shihoyama, K., Opt. Lett. 28, 55 (2003).Google Scholar
Osellame, R., Hoekstra, H.J.W.M., Cerullo, G., Pollnau, M., Laser Photon. Rev. 5, 442 (2011).Google Scholar
Bragheri, F., Minzioni, P., Vazquez, R.M., Bellini, N., Paie, P., Mondello, C., Ramponi, R., Cristiani, I., Osellame, R., Lab Chip 12, 3779 (2012).Google Scholar
Hanada, Y., Sugioka, K., Shihira-Ishikawa, I., Kawano, H., Miyawaki, A., Midorikawa, K., Lab Chip 11, 2109 (2011).Google Scholar
Schaap, A., Rohrlack, T., Bellouard, Y., J. Biophotonics 5, 661 (2012).Google Scholar
An, R., Li, Y., Dou, Y., Liu, D., Yang, H., Gong, Q., Appl. Phys. A 83, 27 (2006).Google Scholar