Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T05:31:52.091Z Has data issue: false hasContentIssue false

Field-theoretic simulations: An emerging tool for probing soft material assembly

Published online by Cambridge University Press:  10 May 2018

Glenn H. Fredrickson
Affiliation:
Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, USA; ghf@mrl.ucsb.edu
Kris T. Delaney
Affiliation:
Materials Research Laboratory, University of California, Santa Barbara, USA; kdelaney@mrl.ucsb.edu
Get access

Abstract

It is curious that first-principles quantum simulations for establishing the electronic structure and bonding patterns of molecules and materials are conducted using fields, yet the standard theoretical approach to understanding their thermal behavior, phase transitions, and self-assembly on larger length- and time scales relies on classical force fields acting on particle degrees of freedom. This article discusses how equilibrium models of classical particle assemblies can be exactly reframed as statistical field theories, and how these theories can be numerically simulated. Today, such field-theoretic simulations have emerged as a highly efficient way to study phase transitions and self-assembly behavior in broad classes of soft materials, including block polymers, polyelectrolyte complexes, and polymeric emulsions.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The following article is based on the Materials Theory Award presentation given by Glenn H. Fredrickson at the 2017 MRS Fall Meeting in Boston, Mass. Fredrickson was recognized “for pioneering the development of field-theoretic computer simulation methods and their application to investigate and design self-assembling polymers and soft materials.”

References

Chandler, D., Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987).Google Scholar
Fredrickson, G.H., The Equilbrium Theory of Inhomogeneous Polymers (Oxford University Press, New York, 2006).Google Scholar
Noid, W.G., Chu, J.W., Ayton, G.S., Krishna, V., Izvekov, S., Voth, G.A., Das, A., Anderson, H.C., J. Chem. Phys. 128, 244114 (2008).CrossRefGoogle Scholar
Shell, M.S., J. Chem. Phys. 137, 084503 (2012).CrossRefGoogle Scholar
Edwards, S.F., Proc. Phys. Soc. Lond. 88, 265 (1966).CrossRefGoogle Scholar
Edwards, S.F., Freed, K.F., J. Phys. C Solid State Phys. 3, 739 (1970).CrossRefGoogle Scholar
de Gennes, P.G., Phys. Lett. A 38, 339 (1972).CrossRefGoogle Scholar
Man, X.-K., Delaney, K.T., Villet, M.C., Orland, H., Fredrickson, G.H., J. Chem. Phys. 140, 024905 (2014).CrossRefGoogle Scholar
Negele, J.W., Orland, H., Quantum Many-Particle Systems (Perseus Books, New York, 1998).Google Scholar
Feynman, R.P., Hibbs, A.R., Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).Google Scholar
Ganesan, V., Fredrickson, G.H., Europhys. Lett. 55, 814 (2001).CrossRefGoogle Scholar
Fredrickson, G.H., Ganesan, V., Drolet, F., Macromolecules 35, 16 (2002).CrossRefGoogle Scholar
Matsen, M.W., Schick, M., Phys. Rev. Lett. 72, 2660 (1994).CrossRefGoogle Scholar
Matsen, M.W., J. Phys. Condens. Matter 14, R21 (2002).CrossRefGoogle Scholar
Fredrickson, G.H., Helfand, E., J. Chem. Phys. 87, 697 (1987).CrossRefGoogle Scholar
Bates, F.S., Maurer, W.W., Lipic, P., Hillmyer, M.A., Almdal, K., Mortensen, K., Fredrickson, G.H., Lodge, T.P., Phys. Rev. Lett. 79, 849 (1997).CrossRefGoogle Scholar
Kieu, T.D., Griffin, C.J., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 49, 3855 (1994).CrossRefGoogle Scholar
Loh, E.Y. Jr., Gubernatis, J.E., Scalettar, R.T., White, S.R., Scalapino, D.J., Sugar, R.L., Phys. Rev. B 41, 9301 (1990).CrossRefGoogle Scholar
Parisi, G., Phys. Lett. B 131, 393 (1983).CrossRefGoogle Scholar
Gausterer, H., Klauder, J.R., Phys. Lett. B 164, 127 (1985).CrossRefGoogle Scholar
Klauder, J.R., Ezawa, H., Prog. Theor. Phys. 69, 664 (1983).CrossRefGoogle Scholar
Gausterer, H., Lee, S., J. Stat. Phys. 73, 147 (1993).CrossRefGoogle Scholar
Delaney, K.T., Fredrickson, G.H., Comput. Phys. Commun. 184, 2102 (2013).CrossRefGoogle Scholar
Lennon, E.M., Mohler, G.O., Ceniceros, H.D., Garcia-Cervera, C.J., Fredrickson, G.H., Multiscale Model. Simul. 6, 1347 (2008).CrossRefGoogle Scholar
Villet, M.C., Fredrickson, G.H., J. Chem. Phys. 141, 224115 (2014).CrossRefGoogle Scholar
Doi, M., Edwards, S.F., The Theory of Polymer Dynamics, (Oxford University Press, New York, 1986).Google Scholar
Padding, J.T., Briels, W.J., J. Chem. Phys. 117, 925 (2002).CrossRefGoogle Scholar
Bates, F.S., Fredrickson, G.H., Annu. Rev. Phys. Chem. 41, 525 (1990).CrossRefGoogle Scholar
Delaney, K.T., Fredrickson, G.H., J. Phys. Chem. B 120, 7615 (2016).CrossRefGoogle Scholar
Lennon, E.M., Katsov, K., Fredrickson, G.H., Phys. Rev. Lett. 101, 138302 (2008).CrossRefGoogle Scholar
Bates, F.S., Rosedale, J.H., Fredrickson, G.H., Glinka, C.J., Phys. Rev. Lett. 61, 2229 (1998).CrossRefGoogle Scholar
Veis, A., Aranyi, C., J. Phys. Chem. 64, 1203 (1960).CrossRefGoogle Scholar
Benedek, G.B., Invest. Ophthalmol. Vis. Sci. 38, 1911 (1997).Google Scholar
Zhao, H., Sun, C.J., Stewart, R.J., Waite, J.H., J. Biol. Chem. 280, 42938 (2005).CrossRefGoogle Scholar
de Kruif, C.G., Weinbreck, F., de Vries, R., Curr. Opin. Colloid Interface Sci. 9, 340 (2004).CrossRefGoogle Scholar
Borue, V.Y., Erukhimovich, I.Y., Macromolecules 21, 3240 (1988).CrossRefGoogle Scholar
Borue, V.Y., Erukhimovich, I.Y., Macromolecules 23, 3625 (1990).CrossRefGoogle Scholar
Castelnovo, M., Joanny, J.F., Eur. Phys. J. E 6, 377 (2001).CrossRefGoogle Scholar
Kudlay, A., de la Cruz, M.O., J. Chem. Phys. 120, 404 (2004).CrossRefGoogle Scholar
Zhang, R., Shklovskii, B.I., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 021909 (2004).CrossRefGoogle Scholar
Sing, C.E., Adv. Colloid Interface Sci. 239, 2 (2017).CrossRefGoogle Scholar
Delaney, K.T., Fredrickson, G.H., J. Chem. Phys. 146, 224902 (2017).CrossRefGoogle Scholar
Popov, Y.O., Lee, J.H., Fredrickson, G.H., J. Polym. Sci. B Polym. Phys. 45, 3223 (2007).CrossRefGoogle Scholar
Lee, J., Popov, Y.O., Fredrickson, G.H., J. Chem. Phys. 128, 224908 (2008).CrossRefGoogle Scholar
Utracki, L.A., Weiss, R.A., “Multiphase Polymers: Blends and Ionomers,” ACS Symp. Ser. 395, Comstock, M.J., Ed. (American Chemical Society, Washington, D.C., 1989).Google Scholar
Shi, W.C., Hamilton, A.L., Delaney, K.T., Fredrickson, G.H., Kramer, E.J., Ntaras, C., Avgeropoulos, A., Lynd, N.A., Demassieux, Q., Creton, C., Macromolecules 48, 5378 (2015).CrossRefGoogle Scholar
Liu, Y.X., Delaney, K.T., Fredrickson, G.H., Macromolecules 50, 6263 (2017).CrossRefGoogle Scholar
Brunsveld, L., Folmer, B.J.B., Meijer, E.W., Sijbesma, R.P., Chem. Rev. 101, 4071 (2001).CrossRefGoogle Scholar
Mester, Z., Mohan, A., Fredrickson, G.H., Macromolecules 44, 9411 (2011).CrossRefGoogle Scholar