Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T05:31:05.509Z Has data issue: false hasContentIssue false

The fracture mechanics of biological and bioinspired materials

Published online by Cambridge University Press:  10 January 2019

J. William Pro
Affiliation:
McGill University, Canada; will.pro87@gmail.com
Francois Barthelat
Affiliation:
McGill University, Canada; francois.barthelat@mcgill.ca
Get access

Abstract

Biological materials such as bone, teeth, and nacre boast remarkable structures and toughening mechanisms, many of them unmatched by engineering materials. In these materials, fracture toughness is key to fulfill critical structural functions and achieve high strength, reliability, robustness, damage tolerance, and notch performance. In this article, we review and discuss some of the main toughening strategies found in hard biological materials. In particular, we underline a “universal” strategy where well-defined microarchitectures, stiff building blocks, and weak interfaces operate in synergy to resist crack propagation. These natural materials have been inspiring the development of a myriad of synthetic materials that duplicate some of these features at the nanoscale and at larger scales. While recent materials show impressive properties, duplication of the architectures and mechanisms seen in natural materials still presents formidable challenges.

Type
Mechanical Behavior of Nanocomposites
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fratzl, P., Weinkamer, R., Prog. Mater. Sci. 52, 1263 (2007).CrossRefGoogle Scholar
Ashby, M., Materials Selection in Mechanical Design, 4th ed. (Butterworth Heinemann, Oxford, 2010).Google Scholar
Ritchie, R.O., Nat. Mater. 10, 817 (2011).CrossRefGoogle Scholar
Lawn, B.R., Fracture of Brittle Solids, 2nd ed., Cambridge Solid State Science Series (Cambridge University Press, New York, 1993).CrossRefGoogle Scholar
Sarikaya, M., Aksay, I.A., Eds., Biomimetics, Design and Processing of Materials (Woodbury, NY, 1995).Google Scholar
Mayer, G., Science 310, 1144 (2005).CrossRefGoogle Scholar
Ballarini, R., Kayacan, R., Ulm, F.J., Belytschko, T., Heuer, A.H., Int. J. Fract. 135, 187 (2005).CrossRefGoogle Scholar
Barthelat, F., Philos. Trans. R. Soc. A 365, 2907 (2007).CrossRefGoogle Scholar
Espinosa, H.D., Rim, J.E., Barthelat, F., Buehler, M.J., Prog. Mater. Sci. 54, 1059 (2009).CrossRefGoogle Scholar
Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O., Nat. Mater. 14, 23 (2015).CrossRefGoogle Scholar
White, S., Luo, W., Paine, M., Fong, H., Sarikaya, M., Snead, M., J. Dent. Res. 80, 321 (2001).CrossRefGoogle Scholar
Katz, J., Ukraincik, K., J. Biomech. 4, 221 (1971).CrossRefGoogle Scholar
Ge, J., Cui, F., Wang, X., Feng, H., Biomaterials 26, 3333 (2005).CrossRefGoogle Scholar
Naleway, S.E., Porter, M.M., McKittrick, J., Meyers, M.A., Adv. Mater. 27, 5455 (2015).CrossRefGoogle Scholar
Nanci, A., Ten Cate, A.R., Ten Cate’s Oral Histology: Development, Structure, and Function (Elsevier, St. Louis, 2013).Google Scholar
He, M.Y., Hutchinson, J.W., Int. J. Solids Struct. 25, 1053 (1989).Google Scholar
Barthelat, F., Dastjerdi, A.K., Rabiei, R., J. R. Soc. Interface 10, 20120849 (2013).CrossRefGoogle Scholar
Parmigiani, J.P., Thouless, M.D., J. Mech. Phys. Solids 54, 266 (2006).CrossRefGoogle Scholar
Barthelat, F., Yin, Z., Buehler, M.J., Nat. Rev. Mater. 1, 16007 (2016).CrossRefGoogle Scholar
Dastjerdi, A.K., Rabiei, R., Barthelat, F., J. Mech. Behav. Biomed. Mater. 19, 50 (2013).CrossRefGoogle Scholar
Currey, J.D., Proc. R. Soc. Lond. B 196, 443 (1977).Google Scholar
Rabiei, R., Bekah, S., Barthelat, F., Acta Biomater. 6, 4081 (2010).CrossRefGoogle Scholar
Jackson, A.P., Vincent, J.F.V., Turner, R.M., Proc. R. Soc. Lond. B 234, 415 (1988).Google Scholar
Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., Aksay, I.A., J. Mater. Res. 16, 2485 (2001).CrossRefGoogle Scholar
Barthelat, F., Tang, H., Zavattieri, P.D., Li, C.M., Espinosa, H.D., J. Mech. Phys. Solids 55, 225 (2007).CrossRefGoogle Scholar
Smith, B.L., Schäffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., Hansma, P.K., Nature (London) 399, 761 (1999).CrossRefGoogle Scholar
Poundarik, A.A., Vashishth, D., Connect. Tissue Res. 56, 87 (2015).CrossRefGoogle Scholar
Fantner, G.E., Hassenkam, T., Kindt, J.H., Weaver, J.C., Birkedal, H., Pechenik, L., Cutroni, J.A., Cidade, G.A., Stucky, G.D., Morse, D.E., Nat. Mater. 4, 612 (2005).CrossRefGoogle Scholar
Ker, R.F., Int. J. Fatigue 29, 1001 (2007).CrossRefGoogle Scholar
Currey, J.D., J. Exp. Biol. 202, 3285 (1999).Google Scholar
Zimmermann, E.A., Gludovatz, B., Schaible, E., Dave, N.K., Yang, W., Meyers, M.A., Ritchie, R.O., Nat. Commun. 4, 2634 (2013).CrossRefGoogle Scholar
Clegg, W.J., Kendall, K., Alford, N.M., Button, T.W., Birchall, J.D., Nature 347, 455 (1990).CrossRefGoogle Scholar
Ritchie, R.O., Buehler, M.J., Hansma, P., Phys. Today 62, 41 (2009).CrossRefGoogle Scholar
Barthelat, F., Rabiei, R., J. Mech. Phys. Solids 59, 829 (2011).CrossRefGoogle Scholar
Bajaj, D., Arola, D., Acta Biomater. 5, 3045 (2009).CrossRefGoogle Scholar
Macho, G.A., Jiang, Y., Spears, I.R., J. Hum. Evol. 45, 81 (2003).CrossRefGoogle Scholar
Kamat, S., Su, X., Ballarini, R., Heuer, A.H., Nature 405, 1036 (2000).CrossRefGoogle Scholar
Poundarik, A.A., Diab, T., Sroga, G.E., Ural, A., Boskey, A.L., Gundberg, C.M., Vashishth, D., Proc. Natl. Acad. Sci. U.S.A. 109, 19178 (2012).CrossRefGoogle Scholar
Gupta, H.S., Wagermaier, W., Zickler, G.A., Raz-Ben Aroush, D., Funari, S.S., Roschger, P., Wagner, H.D., Fratzl, P., Nano Lett. 5, 2108 (2005).CrossRefGoogle Scholar
Peterlik, H., Roschger, P., Klaushofer, K., Fratzl, P., Nat. Mater. 5, 52 (2006).CrossRefGoogle Scholar
Koester, K.J., Ager, J.W. III, Ritchie, R.O., Nat. Mater. 7, 672 (2008).CrossRefGoogle Scholar
Launey, M.E., Buehler, M.J., Ritchie, R.O., Annu. Rev. Mater. Res. 40, 25 (2010).Google Scholar
Sarikaya, M., Microsc. Res. Tech. 27, 360 (1994).CrossRefGoogle Scholar
Vincent, J.F.V., J. Mater. Res. 23, 3140 (2008).CrossRefGoogle Scholar
Almqvist, N., Thomson, N.H., Smith, B.L., Stucky, G.D., Morse, D.E., Hansma, P.K., Mater. Sci. Eng. C 7, 37 (1999).CrossRefGoogle Scholar
Aksay, I.A., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P.M., Gruner, S.M., Science 273, 892 (1996).CrossRefGoogle Scholar
Bonderer, L.J., Studart, A.R., Gauckler, L.J., Science 319, 1069 (2008).CrossRefGoogle Scholar
Podsiadlo, P., Kaushik, A.K., Arruda, E.M., Waas, A.M., Shim, B.S., Xu, J., Nandivada, H., Pumplin, B.G., Lahann, J., Ramamoorthy, A., Science 318, 80 (2007).CrossRefGoogle Scholar
Podsiadlo, P., Kaushik, A.K., Shim, B.S., Agarwal, A., Tang, Z., Waas, A.M., Arruda, E.M., Kotov, N.A., J. Phys. Chem. B 112, 14359 (2008).CrossRefGoogle Scholar
Deville, S., Saiz, E., Nalla, R.K., Tomsia, A.P., Science 311, 515 (2006).CrossRefGoogle Scholar
Bouville, F., Maire, E., Meille, S., Van de Moortèle, B., Stevenson, A.J., Deville, S., Nat. Mater. 13, 508 (2014).CrossRefGoogle Scholar
Erb, R.M., Libanori, R., Rothfuchs, N., Studart, A.R., Science 335, 199 (2012).CrossRefGoogle Scholar
Mao, L.-B., Gao, H.-L., Yao, H.-B., Liu, L., Cölfen, H., Liu, G., Chen, S.-M., Li, S.-K., Yan, Y.-X., Liu, Y.-Y., Science 354, 107 (2016).CrossRefGoogle Scholar
Walther, A., Bjurhager, I., Malho, J.-M., Pere, J., Ruokolainen, J., Berglund, L.A., Ikkala, O., Nano Lett. 10, 2742 (2010).CrossRefGoogle Scholar
Morits, M., Verho, T., Sorvari, J., Liljeström, V., Kostiainen, M.A., Gröschel, A.H., Ikkala, O., Adv. Funct. Mater. 27, 1605378 (2017).CrossRefGoogle Scholar
Rogach, A.L., Talapin, D.V., Shevchenko, E.V., Kornowski, A., Haase, M., Weller, H., Adv. Funct. Mater. 12, 653 (2002).3.0.CO;2-V>CrossRefGoogle Scholar
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H., Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
Murray, C.B., Sun, S., Gaschler, W., Doyle, H., Betley, T.A., Kagan, C.R., IBM J. Res. Dev. 45, 47 (2001).CrossRefGoogle Scholar
Chen, H., Tang, Z., Liu, J., Sun, K., Chang, S.R., Peters, M.C., Mansfield, J.F., Czajka-Jakubowska, A., Clarkson, B.H., Adv. Mater. 18, 1846 (2006).CrossRefGoogle Scholar
Chen, H., Clarkson, B.H., Sun, K., Mansfield, J.F., J. Colloid Interface Sci. 288, 97 (2005).CrossRefGoogle Scholar
Li, L., Mao, C., Wang, J., Xu, X., Pan, H., Deng, Y., Gu, X., Tang, R., Adv. Mater. 23, 4695 (2011).CrossRefGoogle Scholar
Yeom, B., Sain, T., Lacevic, N., Bukharina, D., Cha, S.-H., Waas, A.M., Arruda, E.M., Kotov, N.A., Nature 543, 95 (2017).CrossRefGoogle Scholar
Cox, B.N., J. R. Soc. Interface 10, 20130266 (2013).CrossRefGoogle Scholar
Munch, E., Launey, M.E., Alsem, D.H., Saiz, E., Tomsia, A.P., Ritchie, R.O., Science 322, 1516 (2008).CrossRefGoogle Scholar
Seyed Mohammad Mirkhalaf, V., Francois, B., Bioinspir. Biomim. 10, 026005 (2015).Google Scholar
Pro, J.W., Lim, R.K., Petzold, L.R., Utz, M., Begley, M.R., Extreme Mech. Lett. 5, 1 (2015).CrossRefGoogle Scholar
Abid, N., Mirkhalaf, M., Barthelat, F., J. Mech. Phys. Solids 112, 385 (2018).CrossRefGoogle Scholar
Launey, M.E., Ritchie, R.O., Adv. Mater. 21, 2103 (2009).CrossRefGoogle Scholar
Evans, A.G., J. Am. Ceram. Soc. 73, 187 (1990).CrossRefGoogle Scholar
Livanov, K., Jelitto, H., Bar-On, B., Schulte, K., Schneider, G.A., Wagner, D.H., J. Am. Ceram. Soc. 98, 1285 (2015).CrossRefGoogle Scholar
Mayer, G., Mater. Sci. Eng. C 26, 1261 (2006).CrossRefGoogle Scholar
Stampfl, J., Seyr, M., Luxner, M.H., Pettermann, H., Woesz, A., Fratzl, P., in Biological and Bioinspired Materials and Devices, Aizenberg, J., Landis, W.J., Orme, C., Wang, R., Eds. (Materials Research Society, Warrendale, PA, 2004), vol. 823, pp. 109114.Google Scholar
Dimas, L.S., Bratzel, G.H., Eylon, I., Buehler, M.J., Adv. Funct. Mater. 23, 4629 (2013).CrossRefGoogle Scholar
Espinosa, H.D., Juster, A.L., Latourte, F.J., Loh, O.Y., Gregoire, D., Zavattieri, P.D., Nat. Commun. 2, 173 (2011).CrossRefGoogle Scholar
Mirkhalaf, M., Dastjerdi, A.K., Barthelat, F., Nat. Commun. 5, 3166 (2014).CrossRefGoogle Scholar
Chen, L., Ballarini, R., Kahn, H., Heuer, A.H., J. Mater. Res. 22, 124 (2007).CrossRefGoogle Scholar
Karambelas, G., Santhanam, S., Wing, Z.N., Ceram. Int. 39, 1315 (2013).CrossRefGoogle Scholar
Grunenfelder, L., Suksangpanya, N., Salinas, C., Milliron, G., Yaraghi, N., Herrera, S., Evans-Lutterodt, K., Nutt, S., Zavattieri, P., Kisailus, D., Acta Biomater. 10, 3997 (2014).CrossRefGoogle Scholar
Yin, Z., Dastjerdi, A., Barthelat, F., Acta Biomater. 75, 439 (2018).CrossRefGoogle Scholar