Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T02:32:06.889Z Has data issue: false hasContentIssue false

From mud to microbial electrode catalysts and conductive nanomaterials

Published online by Cambridge University Press:  20 October 2011

Leonard M. Tender*
Affiliation:
Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA; leonard.tender@nrl.mil
Get access

Abstract

Dissimilatory metal-reducing bacteria (DMRB) are a fascinating group of microorganisms that inhabit many natural environments. They possess a distinct capability wherein they can acquire energy by coupling oxidation of organic matter with reduction of insoluble oxidants such as mineral deposits. This capability requires that DMRB transfer respired electrons to their outer surface where electron transfer can occur to an insoluble oxidant. This is distinct from the dominant paradigm, wherein soluble oxidants are transported into microbes for reduction during metabolism. This unique extracellular electron transfer (EET) capability of DMRB extends to reduction of electrodes on which they can proliferate and form persistent films (biofilms). This capability makes DMRB useful as anode catalysts in microbial fuel cells for alternative energy generation and for degradation of organic wastes. In the case of Geobacter spp., anode biofilms can grow to be many microbes thick. In such biofilms, individual microbes contribute to a flux of electrons to the underlying electrode surface, which may be many cell lengths away, confounding long-held notions about the inability of microbes to engage in such long-range EET. This article describes the electrode-reducing ability of DMRB and the latest results describing the mechanism of long-range extracellular electron transfer, which appears to involve filamentous appendages termed nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., Maynard, V., Geochim. Cosmochim. Acta 43, 1075 (1979).CrossRefGoogle Scholar
2.Schindler, J.E., Honick, K.R., Limnol. Oceanogr. 16, 837 (1971).CrossRefGoogle Scholar
3.Reimers, C.E., Tender, L.M., Fertig, S., Wang, W., Environ. Sci. Technol. 35, 192 (2001).CrossRefGoogle Scholar
4.Alberte, R., Bright, H.J., Reimers, C., Tender, L.M., United States Patent 6,913,854.Google Scholar
5.Rao, B.M.L., San Giacomo, J.T. Jr., Kobasz, W., Hosom, D.S., Weller, R.A., Hinton, A.A., Sea Technol. 33(11), 63 (1992).Google Scholar
6.William, S.D., Wilcock, P.C., Kauffman, X.X., J. Power Sources 66, 71 (1997).Google Scholar
7.Bond, D.R., Holmes, D.E., Tender, L.M., Lovley, D.R., Science 295, 483 (2002).CrossRefGoogle Scholar
8.Potter, M.C., R. Soc. B 84, 260 (1911).Google Scholar
9.Cohen, B., J. Bacteriol. 21, 18 (1931).Google Scholar
10.Karube, I., Matasunga, T., Suzuki, S., Tsuru, S., Biotechnol. Bioeng. 19, 1727 (1976).CrossRefGoogle Scholar
11.Palmore, G.T.R., Whitesides, G.M., Microbial and Enzymatic Biofuel Cells, Himmel, M.E., Baker, J.O., Overend, R.P., Eds., Symposium on Enzymatic Conversion of Biomass for Fuels Production presented at the 205th National Meeting of the American-Chemical-Society, Denver, CO, 28 March–2 April, 1993.Google Scholar
12.Allen, R.M., Bennetto, H.P., Appl. Biochem. Biotechnol. 39/40, 27 (1993).CrossRefGoogle Scholar
13.Yi, H., Nevin, K.P., Kim, B.C., Franks, A.E., Klimes, A., Tender, L.M., Lovley, D.R., Biosens. Bioelectron. 24(12), 3498 (2009).CrossRefGoogle Scholar
14.Tender, L.M., Reimers, C.E., Stecher, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobello, K., Fertig, S.J., Lovley, D.R., Nat. Biotechnol. 20(8), 821 (2002).CrossRefGoogle Scholar
15.Heller, A., Feldman, B., Chem. Rev. 108(7), 2482 (2008).CrossRefGoogle Scholar
16.Reimers, C.E., Stecher, H.A. III, Girguis, P., Tender, L.M., Ryckelynck, N., Whaling, P., Geobiology, Geobiology, 2, 123 (2006).CrossRefGoogle Scholar
17.Tender, L.M., Gray, S.A., Groveman, E., Lowy, D.A., Kauffman, P., Melhado, J., Tyce, R.C., Flynn, D., Petrecca, R., Dobarro, J., J. Power Sources 179(2), 571575 (2008).CrossRefGoogle Scholar
18.Gong, Y., Radachowsky, S.E., Wolf, M., Nielsen, M.E., Girguis, P.R., Reimers, C.E., Environ. Sci. Technol. 45(11), 5047 (2011).CrossRefGoogle Scholar
19.Wotawa-Bergen, A.Q., Chadwick, D.B., Richter, K.E., Tender, L.M., Reimers, C.E., Gong, Y., IEEE Conference, Seattle, WA (2010); doi 10.1109/OCEANS.2010.5664612.Google Scholar
20.DeLong, E.F., Chandler, P., Nat. Biotechnol. 20, 788 (2002).CrossRefGoogle Scholar
21.Tender, L.M., United States Patent 8,012,615.Google Scholar
22.de Schamphelaire, L., van den Bossche, L., Dang, H.S., Hofte, M., Boon, N., Rabaey, K., Verstraete, W., Environ. Sci. Policy, 42(8) 3053 (2008).Google Scholar
23.Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Environ. Sci. Technol. 40(17), 5181 (2006).CrossRefGoogle Scholar
24.Chaudhuri, S.K., Lovley, D.R., Nat. Biotechnol. 21(10), 1229 (2003).CrossRefGoogle Scholar
25.Rabaey, K., Verstraete, W., Trends Biotechnol. 23(6), 291 (2005).CrossRefGoogle Scholar
26.Rozendal, R.A., Hamelers, H.V.M., Buisman, C.J.N., Environ. Sci. Technol. 40(17), 5206 (2006).CrossRefGoogle Scholar
27.Rae, K.J., Shaoan, C., Sang-Eun, OH., Logan, B.E., Environ. Sci. Technol. 41(3), 1004 (2007).Google Scholar
28.Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P., Herrmann, I., Environ Sci Technol. 40(17), 5193 (2006).CrossRefGoogle Scholar
29.Rozendal, R.A., Hamelers, H.V.M., Rabaey, K., Keller, J., Buisman, C.J.N., Trends Biotechnol. 26(8), 450 (2008).CrossRefGoogle Scholar
30.Liu, H., Ramnarayanan, R., Logan, B.E., Environ. Sci. Technol. 38(7), 2281 (2004).CrossRefGoogle Scholar
31.Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A., Domiguez-Espinosa, R., Trends Biotechnol. 22(9), 477 (2004).CrossRefGoogle Scholar
32.Min, B., Kim, J.R., Oh, S.E., Regan, J.M., Logan, B.E., Water Res. 39(20), 4961 (2005).CrossRefGoogle Scholar
33.Aelterman, P., Rabaey, K., Clauwaert, P., Verstraete, W., Water Sci. Technol. 54(8), 9 (2006).CrossRefGoogle Scholar
34.Salas, E.C., Luttge, Z.S.A., Tour, J.M., ACS Nano, 4(8), 4852 (2010).CrossRefGoogle Scholar
35.Lovley, D.R., Nat. Rev. Microbiol. 1(1), 35 (2003).CrossRefGoogle Scholar
36.Strycharz, S.M., Woodard, T.L., Johnson, J.P., Nevin, K.P., Sanford, R.A., Löffler, F.E., Lovley, D.R., Appl. Environ. Microbiol. 74(19), 5943 (2008).CrossRefGoogle Scholar
37.Gregory, K.B., Lovley, D.R., Environ. Sci. Technol. 39(22), 8943 (2005).CrossRefGoogle Scholar
38.Kelly, N.P., Hensley, S.A., Franks, A.E., Summers, Z.M., Ou, J., Woodard, T.L., Snoeyenbos-West, O.L., Lovley, D.R., Appl. Environ. Microbiol. 2882 (2011).Google Scholar
39.Malik, S., Drott, E., Grisdela, P., Lee, J., Lee, C., Tender, L.M., Energy Environ. Sci. 2(3), 292 (2009).CrossRefGoogle Scholar
40.Timmers, R.A., Helder, M., Steinbusch, K.J.J., Trends Biotechnol. 29(1), 41 (2011).Google Scholar
41.Rosenbaum, M., Zhen, H., Angenent, L.T., Curr. Opin. Biotechnol. 21(3), 259 (2010).CrossRefGoogle Scholar
42.Koichi, N., Kazuhito, H., Kazuya, W., Appl. Microbiol. Biotechnol. 86(3), 957 (2010).Google Scholar
43.Yongjin, Z., John, P., Blake, B.R., Ilia, B.V., Biotechnol. Bioeng. 104(5), 939 (2009).Google Scholar
44.Marsili, E., Sun, J., Bond, D.R., Electroanalysis, 22(7–8), 865 (2010).CrossRefGoogle Scholar
45.Liu, Y., Kim, H., Franklin, R.R., Bond, D.R., Chem. Phys. Chem. in press (2011).Google Scholar
46.Leang, C., Qian, X., Mester, T., Lovley, D.R., Appl. Environ. Microbiol. 76(12), 4080 (2010).CrossRefGoogle Scholar
47.Inoue, K., Leang, C., Franks, A.E., Woodard, T.L., Nevin, K.P., Lovley, D.R., Environmental Microbiology Reports (2010).Google Scholar
48.Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., Lovley, D.R., Nature 435, 1098 (2005).CrossRefGoogle Scholar
49.El-Naggar, M., Gorby, Y., Xia, W., Nealson, K.N., Biophys. J. 100(3), 132 (2008).Google Scholar
50.Gorby, Y., Yanina, S., McLean, J., Rosso, K., Moyles, D., Dohnalkova, A., Beveridge, T., Chang, I., Kim, B., Kim, K., Proceedings of the National Academy of Sciences 103, 11358 (2006).CrossRefGoogle Scholar
51.Strycharz-Glaven, S.M., Snider, R.M., Guiseppi-Elie, A., Tender, L.M., Energy and Environmental Science (2011), doi:10.1039/CIEEØ1753E.Google Scholar
52.Dalton, E., Surridge, N., Jernigan, J., Wilbourn, K., Facci, J., Murray, R., Chemical Physics 141, 143 (1990).CrossRefGoogle Scholar
53.Richter, H., Nevin, K.P., Jia, H., Lowy, D.A., Lovley, D.R., Tender, L.M., Energy Environ. Sci. 2, 506 (2009).CrossRefGoogle Scholar
54.Strycharz, S.M., Malanoski, A.P., Snider, R.M., Yi, H., Lovley, D.R., Tender, L.M., Energy Environ. Sci. 4, 896 (2011).CrossRefGoogle Scholar
55.Malvankar, N.S., Vargas, M., Nevin, K.P., Franks, A.E., Leang, C., Kim, B.-C., Inoue, K., Mester, T., Covalla, S.F., Johnson, J.P., Rotello, V.M., Tuominen, M.T., Lovley, D.R., Nature Nanotechnology 6, 533 (2011), doi:10.1038/nnano.2011.119.CrossRefGoogle Scholar