Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T02:00:06.089Z Has data issue: false hasContentIssue false

Graphene-based materials for biosensing and bioimaging

Published online by Cambridge University Press:  23 November 2012

Dan Du
Affiliation:
College of Chemistry, Central China Normal University, China; dudan@mail.ccnu.edu.cn
Yuqi Yang
Affiliation:
College of Chemistry, Central China Normal University, China; 335845329@qq.com
Yuehe Lin
Affiliation:
Pacific Northwest National Laboratory; yuehe.lin@pnnl.gov
Get access

Abstract

Graphene, a free-standing two-dimensional crystal with one-atom thickness, exhibits distinct properties that are highly attractive for biosensing and bioimaging, such as a high electrical conductivity, a large planar area, and an excellent ability to quench fluorescence. This article selectively reviews recent advances in the field of graphene-based materials for biosensing and bioimaging. In particular, graphene-based enzyme biosensors, DNA biosensors, and immunosensors are summarized in detail. Graphene-based biotechnology for cell imaging is also described. Future perspectives and possible challenges in this rapidly developing area are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, Y., Li, Z., Wang, J., Li, J., Lin, Y., Trends Biotechnol. 29, 205 (2011).CrossRefGoogle Scholar
Sun, Y., Wu, Q., Shi, G., Energy Environ. Sci. 4, 1113 (2011).CrossRefGoogle Scholar
Wu, J., Pisula, W., Mullen, K., Chem. Rev. 107, 718 (2007).CrossRefGoogle Scholar
Park, S., Ruoff, R.S., Nat. Nanotechnol. 4, 217 (2009).CrossRefGoogle Scholar
Fan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G., Zhang, F., Adv. Mater. 20, 4490 (2008).CrossRefGoogle Scholar
Du, X., Skachko, I., Barker, A., Andrei, E.Y., Nat. Nanotechnol. 3, 491 (2008).CrossRefGoogle Scholar
Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S., Nano Lett. 8, 3498 (2008).CrossRefGoogle Scholar
Chang, H., Tang, L., Wang, Y., Jiang, J., Li, J., Anal. Chem. 82, 2341 (2010).CrossRefGoogle Scholar
Tang, Z., Wu, H., Cort, J.R., Buchko, G.W., Zhang, Y., Shao, Y., Aksay, I.A., Liu, J., Lin, Y., Small 6, 1205 (2010).CrossRefGoogle Scholar
Yang, S., Jia, W.Z., Qian, Q.Y., Zhou, Y.G., Xia, X.H., Anal. Chem. 81, 3478 (2009).CrossRefGoogle Scholar
Gooding, J.J., Electroanalysis 20, 573 (2008).CrossRefGoogle Scholar
Patolsky, F., Zheng, G., Lieber, C.M., Anal. Chem. 78, 4260 (2006).CrossRefGoogle Scholar
Tang, J., Tang, D., Niessner, R., Chen, G., Knopp, D., Anal. Chem. 83, 5407 (2011).CrossRefGoogle Scholar
Strömberg, M., Zardán Gómez de la Torre, T., Göransson, J., Gunnarson, K., Nilsson, M., Svedlindh, P., Stromme, M., Anal. Chem. 81, 3398 (2009).CrossRefGoogle Scholar
Wang, J., Small 1, 1036 (2005).CrossRefGoogle Scholar
Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y., Electroanalysis 22, 1027 (2010).CrossRefGoogle Scholar
Ratinac, K.R., Yang, W., Gooding, J.J., Thordarson, P., Brael, F., Electroanalysis 23, 803 (2011).CrossRefGoogle Scholar
Wang, Y., Zhang, S., Du, D., Shao, Y., Li, Z., Wang, J., Engelhard, M.H., Li, J., Lin, Y., J. Mater. Chem. 21, 5319 (2011).CrossRefGoogle Scholar
Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., Guo, S., Langmuir 26, 6083 (2010).CrossRefGoogle Scholar
Pumera, M., Scipioni, R., Iwai, H., Ohno, T., Miyahara, Y., Boero, M., Chem. Eur. J. 15, 10851 (2009).CrossRefGoogle Scholar
Kang, X., Wang, J., Wu, H., Aksay, I.A., Liu, J., Lin, Y., Biosens. Bioelectron. 25, 901 (2009).CrossRefGoogle Scholar
Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., Braet, F., Angew. Chem., Int. Ed. 49, 2114 (2010).CrossRefGoogle Scholar
Shan, C., Yang, H., Song, J., Han, D., Ivaska, A., Niu, L., Anal. Chem. 81, 2378 (2009).CrossRefGoogle Scholar
Wang, Y., Shao, Y., Matson, D.W., Li, J., Lin, Y., ACS Nano 4, 1790 (2010).CrossRefGoogle Scholar
Tang, L.A.L., Wang, J., Loh, K.P., J. Am. Chem. Soc. 132, 10976 (2010).CrossRefGoogle Scholar
Feng, L., Zhang, S., Liu, Z., Nanoscale 3, 1252 (2011).CrossRefGoogle Scholar
Luo, Z., Vora, P.M., Mele, E.J., Johnson, A.T.C., Kikkawa, J.M., Appl. Phys. Lett. 94, 111909 (2009).CrossRefGoogle Scholar
Loh, K.P., Bao, Q., Eda, G., Chhowalla, M., Nat. Chem. 2, 1015 (2010).CrossRefGoogle Scholar
Liu, F., Choi, J.Y., Seo, T.S., Biosens. Bioelectron. 25, 2361 (2010).CrossRefGoogle Scholar
Lu, C.H., Yang, H.H., Zhu, C.L., Chen, X., Chen, G.N., Angew. Chem., Int. Ed. 48, 4785 (2009).CrossRefGoogle Scholar
He, S., Song, B., Li, D., Zhu, C., Qi, W., Wen, Y., Wang, L., Song, S., Fang, H., Fan, C., Adv. Funct. Mater. 20, 453 (2010).CrossRefGoogle Scholar
Wu, M., Kempaiah, R., Huang, P.J.J., Maheshwari, V., Liu, J., Langmuir 27, 2731 (2011).CrossRefGoogle Scholar
Zhao, X.H., Kong, R.M., Zhang, X.B., Meng, H.M., Liu, W.N., Tan, W., Shen, G.L., Yu, R.Q., Anal. Chem. 83, 5062 (2011).CrossRefGoogle Scholar
Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., Bruchez, M.P., Nat. Biotechnol. 21, 41 (2002).CrossRefGoogle Scholar
Dong, H., Gao, W., Yan, F., Ji, H., Ju, H., Anal. Chem. 82, 5511 (2010).CrossRefGoogle Scholar
Zhou, M., Zhai, Y., Dong, S.. Anal. Chem. 81, 5603 (2009).CrossRefGoogle Scholar
Banks, C.E., Davies, T.J., Wildgoose, G.G., Compton, R.G., Chem. Commun. 829, (2005).Google Scholar
Lim, C.X., Hoh, H.Y., Ang, P.K., Loh, K.P., Anal. Chem. 82, 7387 (2010).CrossRefGoogle Scholar
Muti, M., Sharma, S., Erdem, A., Papakonstantinou, P., Electroanalysis 23, 272 (2011).CrossRefGoogle Scholar
Bonanni, A., Pumera, M.. ACS Nano 5, 2356 (2011).CrossRefGoogle Scholar
Wang, Z., Zhang, J., Chen, P., Zhou, X., Yang, Y., Wu, S.N., Niu, L., Han, Y., Wang, L., Chen, P., Boey, F., Zhanga, Q., Liedberg, B., Zhang, H., Biosens. Bioelectron. 26, 3881 (2011).CrossRefGoogle Scholar
Hu, Y., Li, F., Bai, X., Li, D., Hua, S., Wang, K., Niu, L., Chem. Commun. 47, 1743 (2011).CrossRefGoogle Scholar
Du, D., Wang, L., Shao, Y., Wang, J., Engelhard, M.H., Lin, Y., Anal. Chem. 83, 746 (2011).CrossRefGoogle Scholar
Wan, Y., Wang, Y., Wu, J., Zhang, D., Anal. Chem. 83, 648 (2011).CrossRefGoogle Scholar
Tang, J., Tang, D., Niessner, R., Chen, G., Knopp, D., Anal. Chem. 83, 5407 (2011).CrossRefGoogle Scholar
Wei, Q., Xin, X., Du, B., Wu, D., Han, Y., Zhao, Y., Cai, Y., Li, R., Yang, M., Li, H., Biosens. Bioelectron. 26, 723 (2010).CrossRefGoogle Scholar
Yang, M., Javadi, A., Li, H., Gong, S., Biosens. Bioelectron. 26, 560 (2010).CrossRefGoogle Scholar
Du, D., Zou, Z., Shin, Y., Wang, J., Wu, H., Engelhard, M.H., Liu, J., Aksay, I.A., Lin, Y., Anal. Chem. 82, 2989 (2010).CrossRefGoogle Scholar
Liu, K., Zhang, J.J., Wang, C., Zhu, J.J., Biosens. Bioelectron. 26, 3627 (2011).CrossRefGoogle Scholar
Jung, J.H., Cheon, D.S., Liu, F., Lee, K.B., Seo, T.S., Angew. Chem., Int. Ed. 49, 5708 (2010).CrossRefGoogle Scholar
Wang, Y., Li, Z., Hu, D., Lin, C.T., Li, J., Lin, Y., J. Am. Chem. Soc. 132, 9274 (2010).CrossRefGoogle Scholar
Mueller, M.L., Yan, X., McGuire, J.A., Li, L.S., Nano Lett. 10, 2679 (2010).CrossRefGoogle Scholar
Ponomarenko, L.A., Schedin, F., Katsnelson, M.I., Yang, R., Hill, E.W., Novoselov, K.S., Geim, A.K., Science 320, 356 (2008).CrossRefGoogle Scholar
Pan, D., Zhang, J., Li, Z., Wu, M., Adv. Mater. 22, 734 (2010).CrossRefGoogle Scholar
Shen, J., Zhu, Y., Chen, C., Yang, X., Li, C., Chem. Commun. 47, 2580 (2011).CrossRefGoogle Scholar
Zhu, S., Zhang, J., Qiao, C., Tang, S., Li, Y., Yuan, W., Li, B., Tian, L., Liu, F., Hu, R., Gao, H., Wei, H., Zhang, H., Sun, H., Yang, B., Chem. Commun. 47, 6858 (2011).CrossRefGoogle Scholar
Chen, W., Yi, P., Zhang, Y., Zhang, L., Deng, Z., Zhang, Z., ACS Appl. Mater. Interfaces 3, 4085 (2011).CrossRefGoogle Scholar