Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T02:59:10.424Z Has data issue: false hasContentIssue false

Guest molecules as a design element for metal–organic frameworks

Published online by Cambridge University Press:  07 November 2016

Mark D. Allendorf
Affiliation:
Hydrogen Advanced Materials Research Consortium, Sandia National Laboratories, USA; mdallen@sandia.gov
Raghavender Medishetty
Affiliation:
Inorganic and Metal–Organic Chemistry, Technische Universität München, Germany; raghavender.medishetty@tum.de
Roland A. Fischer
Affiliation:
Inorganic and Metal–Organic Chemistry, Technische Universität München, Germany; roland.fischer@ch.tum.de
Get access

Abstract

The well-known synthetic versatility of metal–organic frameworks (MOFs) is rooted in the ability to predict the metal-ion coordination geometry and the vast possibilities to use organic chemistry to modify the linker groups. However, the use of molecules occupying the pores as a component of framework design has been largely ignored. Recent reports show that the presence of these so-called “guests” can have dramatic effects, even when they are a seemingly innocuous species such as water or polar solvents. We term these guests “non-innocent” when their presence alters the MOF in such a way as to create a new material with properties different from the MOF without the guests. Advantages of using guest molecules to impart new properties to MOFs include the relative ease of introducing new functionalities, the ability to modify the material properties at will by removing the guest or inserting different ones, and avoidance of the difficulties associated with synthesizing new frameworks, which can be challenging even when the basic topology remains constant. In this article, we describe the “Guest@MOF” concept and provide examples illustrating its potential as a new MOF design element.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.-W., Chem. Rev. 112, 782 (2012).Google Scholar
Li, J.R., Kuppler, R.J., Zhou, H.C., Chem. Soc. Rev. 38, 1477 (2009).Google Scholar
Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., Hupp, J.T., Chem. Rev. 112, 1105 (2012).Google Scholar
Liu, J.W., Chen, L.F., Cui, H., Zhang, J.Y., Zhang, L., Su, C.Y., Chem. Soc. Rev. 43, 6011 (2014).Google Scholar
Allendorf, M.D., Foster, M.E., Leonard, F., Stavila, V., Feng, P.L., Doty, F.P., Leong, K., Ma, E.Y., Johnston, S.R., Talin, A.A., J. Phys. Chem. Lett. 6, 1182 (2015).CrossRefGoogle Scholar
Talin, A.A., Centrone, A., Ford, A.C., Foster, M.E., Stavila, V., Haney, P., Kinney, R.A., Szalai, V., El Gabaly, F., Yoon, H.P., Leonard, F., Allendorf, M.D., Science 343, 66 (2014).Google Scholar
Leong, K., Foster, M.E., Wong, B.M., Spoerke, E.D., Gough, D.V., Deaton, J.C., Allendorf, M.D., J. Mater. Chem. A 2, 3389 (2014).Google Scholar
Amoore, J.J.M., Neville, S.M., Moubaraki, B., Iremonger, S.S., Murray, K.S., Letard, J.F., Kepert, C.J., Chem. Eur. J. 16, 1973 (2010).Google Scholar
Kurmoo, M., Kumagai, H., Chapman, K.W., Kepert, C.J., Chem. Commun. 24, 3012 (2005). doi: 10.1039/B500614G.Google Scholar
Pan, L., Liu, G., Li, H., Meng, S., Han, L., Shang, J., Chen, B., Platero-Prats, A.E., Lu, W., Zou, X.D., Li, R.W., J. Am. Chem. Soc. 136, 17477 (2014).Google Scholar
Erickson, K.J., Léonard, F., Stavila, V., Foster, M.E., Spataru, C.D., Jones, R.E., Foley, B.M., Hopkins, P.E., Allendorf, M.D., Talin, A.A., Adv. Mater. 27, 3453 (2015).CrossRefGoogle Scholar
D’Alessandro, D.M., Kanga, J.R.R., Caddy, J.S., Aust. J. Chem. 64, 718 (2011).Google Scholar
Sun, L., Campbell, M.G., Dincă, M., Angew. Chem. Int. Ed. 55, 3566 (2016).Google Scholar
Brunschwig, B.S., Creutz, C., Sutin, N., Chem. Soc. Rev. 31, 17 (2002).Google Scholar
Marcus, R.A., Sutin, N., Biochim. Biophys. Acta 811, 265 (1985).Google Scholar
Robin, M.B., Day, P., “Mixed Valence Chemistry—A Survey and Classification,” in Advances in Inorganic Chemistry and Radiochemistry, Emeléus, H.J., Sharpe, A.G., Eds. (Academic, New York, 1967), p. 248.Google Scholar
Chui, S.S.-Y., Lo, S.M.-F., Charmant, J.P.H., Orpen, A.G., Williams, I.D., Science 283, 1148 (1999).Google Scholar
Nie, X.W., Kulkarni, A., Sholl, D.S., J. Phys. Chem. Lett. 6, 1586 (2015).Google Scholar
Gajek, M., Bibes, M., Fusil, S., Bouzehouane, K., Fontcuberta, J., Barthelemy, A., Fert, A., Nat. Mater. 6, 296 (2007).CrossRefGoogle Scholar
Cheong, S.-W., Mostovoy, M., Nat. Mater. 6, 13 (2007).Google Scholar
Rogez, G., Viart, N., Drillon, M., Angew. Chem. Int. Ed. 49, 1921 (2010).Google Scholar
Jain, P., Ramachandran, V., Clark, R.J., Zhou, H.D., Toby, B.H., Dalal, N.S., Kroto, H.W., Cheetham, A.K., J. Am. Chem. Soc. 131, 13625 (2009).Google Scholar
Stroppa, A., Jain, P., Barone, P., Marsman, M., Perez-Mato, J.M., Cheetham, A.K., Kroto, H.W., Picozzi, S., Angew. Chem. Int. Ed. 50, 5847 (2011).Google Scholar
Thomson, R.I., Jain, P., Cheetham, A.K., Carpenter, M.A., Phys. Rev. B Condens. Matter 86, 214304 (2012).Google Scholar
Tian, Y., Cong, J., Shen, S., Chai, Y., Yan, L., Wang, S., Sun, Y., Phys. Status Solidi Rapid Res. Lett. 8, 91 (2014).CrossRefGoogle Scholar
Tian, Y., Shen, S., Cong, J., Yan, L., Wang, S., Sun, Y., J. Am. Chem. Soc. 138, 782 (2016).Google Scholar
Tian, Y., Stroppa, A., Chai, Y., Yan, L., Wang, S., Barone, P., Picozzi, S., Sun, Y., Sci. Rep. 4, 6062 (2014).Google Scholar
Qin, W., Xu, B., Ren, S., Nanoscale 7, 9122 (2015).Google Scholar
Horiuchi, S., Tokunaga, Y., Giovannetti, G., Picozzi, S., Itoh, H., Shimano, R., Kumai, R., Tokura, Y., Nature 463, 789 (2010).Google Scholar
Hagfeldt, A., Boschloo, G., Sun, L.C., Kloo, L., Pettersson, H., Chem. Rev. 110, 6595 (2010).Google Scholar
Wang, Q., Ma, D., Chem. Soc. Rev. 39, 2387 (2010).Google Scholar
Mieno, H., Kabe, R., Notsuka, N., Allendorf, M.D., Adachi, C., Adv. Opt. Mater. 4, 1015 (2016), http://www.dx.doi.org/10.1002/adom.201600103.Google Scholar
Allendorf, M.D., Bauer, C.A., Bhakta, R.K., Houk, R.J.T., Chem. Soc. Rev. 38, 1330 (2009).Google Scholar
Cui, Y.J., Yue, Y.F., Qian, G.D., Chen, B.L., Chem. Rev. 112, 1126 (2012).Google Scholar
Sun, C.-Y., Wang, X.-L., Zhang, X., Qin, C., Li, P., Su, Z.-M., Zhu, D.-X., Shan, G.-G., Shao, K.-Z., Wu, H., Li, J., Nat. Commun. 4 (2013).Google Scholar
Xie, W., He, W.W., Du, D.Y., Li, S.L., Qin, J.S., Su, Z.M., Sun, C.Y., Lan, Y.Q., Chem. Commun. 52, 3288 (2016).Google Scholar
Thompson, M., MRS Bull. 32, 694 (2007).Google Scholar
Doty, F.P., Bauer, C.A., Skulan, A.J., Grant, P.G., Allendorf, M.D., Adv. Mater. 21, 95 (2009).Google Scholar
Perry, J.J., Feng, P.L., Meek, S.T., Leong, K., Doty, F.P., Allendorf, M.D., J. Mater. Chem. 22, 10235 (2012).Google Scholar
Feng, P.L., Villone, J., Hattar, K., Mrowka, S., Wong, B.M., Allendorf, M.D., Doty, F.P., IEEE Trans. Nucl. Sci. 59, 3312 (2012).Google Scholar