Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T05:19:12.788Z Has data issue: false hasContentIssue false

Hierarchical lightweight composite materials for structural applications

Published online by Cambridge University Press:  08 September 2016

Larissa Gorbatikh
Affiliation:
Department of Materials Engineering, KU Leuven, Belgium; larissa.gorbatikh@mtm.kuleuven.be
Brian L. Wardle
Affiliation:
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, USA; wardle@mit.edu
Stepan V. Lomov
Affiliation:
Department of Materials Engineering, KU Leuven, Belgium; Stepan.Lomov@mtm.kuleuven.be
Get access

Abstract

Hierarchical design down to the nanoscale has become possible in structural composite materials with the discovery of carbon nanomaterials such as carbon nanotubes (CNTs) and graphene. Composites that simultaneously combine microscopic continuous fibers and nanoscale reinforcements are known in the field as hierarchical or nanoengineered composites. The additional reinforcement at the nanoscale promises high-performance composites with unique combinations of mechanical properties and new functionalities. Here, we review advances in fiber-reinforced polymers modified with CNTs. Three routes for integration of CNTs in composites are discussed: deposition on fibers/plies, dispersion in the matrix, and assembly into fibers. We highlight opportunities and challenges focusing on mechanical performance and processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Harris, C.E., Starnes, J.H., Shuart, M.J., “An Assessment of the State-of-the-Art in the Design and Manufacturing of Large Composite Structures for Aerospace Vehicles” (Tech. Rep., NASA Langley Research Center, NASA/TM-2001-210844, 2001).Google Scholar
Fratzl, P., Weinkamer, R., Prog. Mater. Sci. 52, 1263 (2007).Google Scholar
Meyers, M.A., Chen, P., Lin, A.Y., Seki, Y., Prog. Mater. Sci. 53, 1 (2008).Google Scholar
Ortiz, C., Boyce, M.C., Science 319 (5866), 1053 (2008).Google Scholar
Radushkevich, L.V., Lukyanovich, V.M., Zurn. Fisic. Chim. 26, 88 (1952).Google Scholar
Oberlin, A., Endo, M., Koyama, T., J. Cryst. Growth 32 (3), 335 (1976).Google Scholar
Iijima, S., Nature 354 (6348), 56 (1991).Google Scholar
Yu, M., Files, B.S., Arepalli, S., Ruoff, R.S., Phys. Rev. Lett. 84, 5552 (2000).Google Scholar
Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K., Carbon 44, 1624 (2006).Google Scholar
Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C., Prog. Polym. Sci. 35 (3), 357 (2010).Google Scholar
Siochi, E.J., Harrison, J.S., MRS Bull. 40, 829 (2015).Google Scholar
Lozano, P.C., Wardle, B.L., Moloney, P., Rawal, S., MRS Bull. 40, 842 (2015).Google Scholar
Thostenson, E.T., Ren, Z.F., Chou, T.W., Compos. Sci. Technol. 61 (13), 1899 (2001).Google Scholar
Chou, T.W., Gao, L., Thostenson, E.T., Zhang, Z., Byun, J.H., Compos. Sci. Technol. 70, 1 (2010).Google Scholar
Qian, H., Greenhalgh, E.S., Shaffer, M.S.P., Bismarck, A., J. Mater. Chem. 20 (23), 4751 (2011).Google Scholar
Koo, J.H., Polymer Nanocomposites: Processing, Characterization, and Applications (McGraw-Hill, New York, 2006).Google Scholar
Loos, M., Carbon Nanotube Reinforced Composites (Elsevier, Waltham, MA, 2014).Google Scholar
Kamae, T., Drzal, L.T., Compos. Part A Appl. Sci. Manuf. 43 (9), 1569 (2012).Google Scholar
Yamamoto, N., Hart, A.J., Garcia, E.J., Wicks, S.S., Duong, H.M., Slocum, A.H., Wardle, B.L., Carbon 47 (3), 551 (2009).Google Scholar
Garcia, E.J., Hart, A.J., Wardle, B.L., Slocum, A.H., Adv. Mater. 19 (16), 2151 (2007).Google Scholar
Wicks, S.S., de Villoria, R.G., Wardle, B.L., Compos. Sci. Technol. 70 (1), 20 (2010).Google Scholar
Wicks, S.S., Wang, W., Williams, M.R., Wardle, B.L., Compos. Sci. Technol. 100, 128 (2014).Google Scholar
Qian, H., Bismarck, A., Greenhalgh, E.S., Kalinka, G., Shaffer, M.S.P., Chem. Mater. 20 (5), 1862 (2008).Google Scholar
Sager, R.J., Klein, P.J., Lagoudas, D.C., Zhang, Q., Liu, J., Dai, L., Baur, J.W., Compos. Sci. Technol. 69 (7–9), 898 (2009).Google Scholar
Zhang, F.H., Wang, R.G., He, X.D., Wang, C., Ren, L.N., J. Mater. Sci. 44 (13), 3574 (2009).Google Scholar
Wood, C.D., Palmeri, M.J., Putz, K.W., Ho, G., Barto, R., Brinson, L.C., Compos. Sci. Technol. 72 (14), 1705 (2012).Google Scholar
Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F., Chou, T.W., J. Appl. Phys. 91 (9), 6034 (2002).Google Scholar
Romanov, V., Lomov, S.V., Verpoest, I., Gorbatikh, L., Compos. Part A Appl. Sci. Manuf. 63, 32 (2014).Google Scholar
Romanov, V.S., Lomov, S.V., Verpoest, I., Gorbatikh, L., Compos. Sci. Technol. 114, 79 (2015).Google Scholar
Naito, K., Yang, J.M., Tanaka, Y., Kagawa, Y., Appl. Phys. Lett. 92, 231912 (2008).Google Scholar
De Greef, N., Zhang, L., Magrez, A., Forro, L., Locquet, J.-P., Verpoest, I., Seo, J.W., Diam. Relat. Mater. 51, 39 (2015).Google Scholar
Li, R., Lachman, N., Florin, P., Wagner, H.D., Wardle, B.L., Compos. Sci. Technol. 117, 139 (2015).Google Scholar
Lomov, S.V., Gorbatikh, L., Houlle, M., Kotanjac, Z., Koissin, V., Vallons, K., Verpoest, I., Compos. Sci. Technol. 71, 1746 (2011).Google Scholar
Lomov, S.V., Gorbatikh, L., Verpoest, I., Carbon 49, 2079 (2011).Google Scholar
Lomov, S.V., Gorbatikh, L., Verpoest, I., Carbon 49, 4458 (2011).Google Scholar
Lomov, S.V., Wicks, S., Gorbatikh, L., Verpoest, I., Wardle, B.L., Compos. Sci. Technol. 90, 57 (2014).Google Scholar
Gao, S.-L., Mäder, E., Plonka, R., Compos. Sci. Technol. 68 (14), 2892 (2008).Google Scholar
Zhang, J.E., Zhuang, R.C., Liu, J.W., Mader, E., Heinrich, G., Gao, S.L., Carbon 48 (8), 2273 (2010).Google Scholar
Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., Luizi, F., van Vuure, A.W., Lomov, S.V., Verpoest, I., Compos. Sci. Technol. 70, 1346 (2010).Google Scholar
Drescher, P., Thomas, M., Borris, J., Riedel, U., Arlt, C., Compos. Sci. Technol. 74, 60 (2013).Google Scholar
Veedu, V.P., Cao, A.Y., Li, X.S., Ma, K.G., Soldano, C., Kar, S., Ajayan, P.M., Ghasemi-Nejhad, M.N., Nat. Mater. 5 (6), 457 (2006).Google Scholar
Garcia, E.J., Wardle, B.L., Hart, A.J., Compos. Part A Appl. Sci. Manuf. 39 (6), 1065 (2008).Google Scholar
Xu, X., Zhou, Z., Hei, Y., Zhang, B., Bao, J., Chen, X., Compos. Sci. Technol. 95, 75 (2014).Google Scholar
Wagner, H.D., Ajayan, P.M., Schulte, K., Compos. Sci. Technol. 83, 27 (2013).Google Scholar
Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Nolte, M.C.M., Schulte, K., Compos. Sci. Technol. 66 (16), 3115 (2006).Google Scholar
Quaresimin, M., Schulte, K., Zappalorto, M., Chandrasekaran, S., Compos. Sci. Technol. 123, 187 (2015).Google Scholar
De Greef, N., Gorbatikh, L., Godara, A., Mezzo, L., Lomov, S.V., Verpoest, I., Carbon 49 (14), 4650 (2011).Google Scholar
Yokozeki, T., Iwahori, Y., Ishiwata, S., Compos. Part A Appl. Sci. Manuf. 38 (3), 917 (2007).Google Scholar
Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S.V., VanVurre, A.W., Gorbatikh, L., Moldenaers, P., Verpoest, I., Carbon 47 (12), 2914 (2009).Google Scholar
Tsantzalis, S., Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., Tanimoto, T., Friedrich, K., Compos. Part A Appl. Sci. Manuf. 38, 1159 (2007).Google Scholar
Grimmer, C.S., Dharan, C.K.H., J. Mater. Sci. 43, 4487 (2008).Google Scholar
Grimmer, C.S., Dharan, C.K.H., Compos. Sci. Technol. 70, 901 (2010).Google Scholar
Böger, L., Sumfleth, J., Hedemann, H., Schulte, K., Compos. Part A Appl. Sci. Manuf. 41 (10), 1419 (2010).Google Scholar
Lubineau, G., Rahaman, A., Carbon 50, 2377 (2012).Google Scholar
Yokozeki, T., Iwahori, Y., Ishiwata, S., Enomoto, K., Compos. Part A Appl. Sci. Manuf. 38, 2121 (2007).Google Scholar
Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., Paipetis, A., Compos. Sci. Technol. 70, 553 (2010).Google Scholar
Siegfried, M., Tola, C., Claes, M., Lomov, S.V., Verpoest, I., Gorbatikh, L., Compos. Struct. 111, 488 (2014).Google Scholar
Aravand, M.A., Lomov, S.V., Verpoest, I., Gorbatikh, L., Express Polym. Lett. 8 (8), 596 (2014).Google Scholar
Haesch, A., Clarkson, T., Ivens, J., Lomov, S.V., Verpoest, I., Gorbatikh, L., Nanocomposites 1 (4), 204 (2015).Google Scholar
Hercega, T.M., Abidin, M.S.Z., Greenhalgh, E.S., Shaffer, M.S.P., Bismarck, A., Compos. Sci. Technol. 127, 134 (2016).Google Scholar
Lu, W., Zu, M., Byun, J.H., Kim, B.S., Chou, T.W., Adv. Mater. 24, 1805 (2012).Google Scholar
Wu, A.S., Chou, T.W., Mater. Today 15 (7–8), 302 (2012).Google Scholar
Zhang, M., Atkinson, K.R., Baughman, R.H., Science 306 (5700), 1358 (2004).Google Scholar
Bogdanovich, A., Bradford, P., Mungalov, D., Fang, S.L., Zhang, M., Baughman, R.H., Hudson, S., Sampe J. 43 (1), 6 (2007).Google Scholar
Bradford, P.D., Bogdanovich, A.E., Compos. Part A Appl. Sci. Manuf. 41, 230 (2010).Google Scholar
Vilatela, J.J., Windle, A.H., Adv. Mater. 22, 4959 (2010).Google Scholar
Vilatela, J.J., Khare, R., Windle, A.H., Carbon 50 (3), 1227 (2012).Google Scholar
Shimamura, Y., Oshima, K., Tohgo, K., Fujii, T., Shirasu, K., Yamamoto, G., Hashida, T., Goto, K., Ogasawara, T., Naito, K., Nakano, T., Inoue, Y., Compos. Part A Appl. Sci. Manuf. 62, 32 (2014).Google Scholar
Rogers, E.M., Diffusion of Innovations (Free Press, New York, 1983).Google Scholar
Romanov, V., Lomov, S.V., Verpoest, I., Gorbatikh, L., Carbon 82, 184 (2015).Google Scholar
Romanov, V.S., Lomov, S.V., Verpoest, I., Gorbatikh, L., Compos. Struct. 133, 246 (2015).Google Scholar
Dai, G.M., Mishnaevsky, L. Jr., Compos. Sci. Technol. 91, 71 (2014).Google Scholar
Mishnaevsky, L. Jr., Dai, G., Compos. Struct. 117, 156 (2014).Google Scholar
Gorbatikh, L., Lomov, S.V., Verpoest, I., J. Mech. Phys. Solids 58, 735 (2010).Google Scholar