Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T23:34:07.343Z Has data issue: false hasContentIssue false

High-performance SERS substrates: Advances and challenges

Published online by Cambridge University Press:  09 August 2013

Bhavya Sharma
Affiliation:
Department of Chemistry, Northwestern University;bhavya-sharma@northwestern.edu
M. Fernanda Cardinal
Affiliation:
Department of Chemistry, Northwestern University;fernanda.cardinal@northwestern.edu
Samuel L. Kleinman
Affiliation:
Department of Chemistry, Northwestern University;s-kleinman@northwestern.edu
Nathan G. Greeneltch
Affiliation:
Department of Chemistry, Northwestern University;ngreeneltch@u.northwestern.edu
Renee R. Frontiera
Affiliation:
Department of Chemistry, University of Minnesota;rrf@umn.edu
Martin G. Blaber
Affiliation:
Department of Chemistry, Northwestern University;m-blaber@northwestern.edu
George C. Schatz
Affiliation:
Department of Chemistry, Northwestern University;g-schatz@northwestern.edu
Richard P. Van Duyne
Affiliation:
Department of Chemistry, Northwestern University;vanduyne@northwestern.edu
Get access

Abstract

Surface-enhanced Raman spectroscopy (SERS) is highly dependent upon the substrate, where excitation of the localized metal surface plasmon resonance enhances the vibrational scattering signal of proximate analyte molecules. This article reviews recent progress in the fabrication of SERS substrates and the requirements for characterization of plasmonic materials as SERS platforms. We discuss bottom-up fabrication of SERS substrates and illustrate the advantages of rational control of metallic nanoparticle synthesis and assembly for hot spot creation. We also detail top-down methods, including nanosphere lithography for the preparation of tunable, highly sensitive, and robust substrates, as well as the unique benefits of tip-enhanced Raman spectroscopy for simultaneous acquisition of molecular vibrational information and high spatial resolution imaging. Finally, we discuss future prospects and challenges in SERS, including the development of surface-enhanced femtosecond stimulated Raman spectroscopy, microfluidics with SERS, creating highly reproducible substrates, and the need for reliable characterization of substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abalde-Cela, S., Aldeanueva-Potel, P., Mateo-Mateo, C., Rodríguez-Lorenzo, L., Alvarez-Puebla, R.A., Liz-Marzán, L.M., J. R. Soc. Interface 7, S435 (2010).CrossRefGoogle Scholar
Kleinman, S.L., Ringe, E., Valley, N., Wustholz, K.L., Phillips, E., Scheidt, K.A., Schatz, G.C., Van Duyne, R.P., J. Am. Chem. Soc. 133, 4115 (2011).CrossRefGoogle Scholar
Le Ru, E.C., Meyer, M., Etchegoin, P.G., J. Phys. Chem. B 110, 1944 (2006).CrossRefGoogle Scholar
Pieczonka, N.P.W., Moula, G., Aroca, R.F., Langmuir 25, 11261 (2009).CrossRefGoogle ScholarPubMed
Rodríguez-Lorenzo, L., Álvarez-Puebla, R.A., Pastoriza-Santos, I., Mazzucco, S., Stéphan, O., Kociak, M., Liz-Marzán, L.M., García de Abajo, F.J., J. Am. Chem. Soc. 131, 4616 (2009).CrossRefGoogle Scholar
Sharma, B., Frontiera, R.R., Henry, A.-I., Ringe, E., Van Duyne, R.P., Mater. Today 15, 16 (2012).CrossRefGoogle Scholar
Banholzer, M.J., Millstone, J.E., Qin, L., Mirkin, C.A., Chem. Soc. Rev. 37, 885 (2008).CrossRefGoogle Scholar
Haes, A.J., Haynes, C.L., McFarland, A.D., Schatz, G.C., Van Duyne, R.P., Zou, S., MRS Bull. 30, 368 (2005).CrossRefGoogle Scholar
Kleinman, S.L., Frontiera, R.R., Henry, A.-I., Dieringer, J.A., Van Duyne, R.P., Phys. Chem. Chem. Phys. 15, 21 (2013).CrossRefGoogle Scholar
Kleinman, S.L., Sharma, B., Blaber, M.G., Henry, A.-I., Valley, N., Freeman, R.G., Natan, M.J., Schatz, G.C., Van Duyne, R.P., J. Am. Chem. Soc. 135, 301 (2013).CrossRefGoogle Scholar
Greeneltch, N.G., Blaber, M.G., Henry, A.-I., Schatz, G.C., Van Duyne, R.P., Anal. Chem. (2013), doi:10.1021/ac303269w.Google Scholar
Jeanmaire, D.L., Van Duyne, R.P., J. Electroanal. Chem. Interfacial Electrochem. 84, 1 (1977).CrossRefGoogle Scholar
Creighton, J.A., Blatchford, C.G., Albrecht, M.G., J. Chem. Soc., Faraday Trans. II 75, 790 (1979).CrossRefGoogle Scholar
Lee, P.C., Meisel, D., J. Phys. Chem. 86, 3391 (1982).CrossRefGoogle Scholar
Jin, M., van Wolferen, H., Wormeester, H., van den Berg, A., Carlen, E.T., Nanoscale 4, 4712 (2012).CrossRefGoogle Scholar
Qiuming, Y., Scott, B., Brian, C., Jiajie, X., Paul, M.W., Heng, G., Dmitry, K., Nanotechnology 21, 355301 (2010).Google Scholar
Van Duyne, R.P., Hulteen, J.C., Treichel, D.A., J. Chem. Phys. 99, 2101 (1993).CrossRefGoogle Scholar
Anema, J.R., Li, J.-F., Yang, Z.-L., Ren, B., Tian, Z.-Q., Annu. Rev. Anal. Chem. 4, 129 (2011).CrossRefGoogle Scholar
Barcelo, S.J., Kim, A., Wu, W., Li, Z., ACS Nano 6, 6446 (2012).CrossRefGoogle Scholar
Osberg, K.D., Rycenga, M., Harris, N., Schmucker, A.L., Langille, M.R., Schatz, G.C., Mirkin, C.A., Nano Lett. 12, 3828 (2012).CrossRefGoogle Scholar
Shim, S., Stuart, C.M., Mathies, R.A., ChemPhysChem 9, 697 (2008).CrossRefGoogle Scholar
Fan, M., Andrade, G.F.S., Brolo, A.G., Anal. Chim. Acta 693, 7 (2011).CrossRefGoogle Scholar
Skaff, H., Emrick, T., in Nanoparticles: Building Blocks for Nanotechnology, Rotello, V., Ed. (Springer, NY, 2004), p. 29.CrossRefGoogle Scholar
Grzelczak, M., Vermant, J., Furst, E.M., Liz-Marzán, L.M., ACS Nano 4, 3591 (2010).CrossRefGoogle Scholar
Song, J., Zhou, J., Duan, H., J. Am. Chem. Soc. 134, 13458 (2012).CrossRefGoogle Scholar
Wang, L., Xu, L., Kuang, H., Xu, C., Kotov, N.A., Acc. Chem. Res. 45, 1916 (2012).CrossRefGoogle Scholar
Wang, T., LaMontagne, D., Lynch, J., Zhuang, J., Cao, Y.C., Chem. Soc. Rev. (2013), doi:10.1039/C2CS35318K.Google Scholar
Ye, X., Zheng, C., Chen, J., Gao, Y., Murray, C.B., Nano Lett. 13 (5), 2163 (2013).CrossRefGoogle Scholar
Brinson, B.E., Lassiter, J.B., Levin, C.S., Bardhan, R., Mirin, N., Halas, N.J., Langmuir 24, 14166 (2008).CrossRefGoogle Scholar
Grzelczak, M., Pérez-Juste, J., Mulvaney, P., Liz-Marzán, L.M., Chem. Soc. Rev. 37, 1783 (2008).CrossRefGoogle Scholar
Langille, M.R., Personick, M.L., Zhang, J., Mirkin, C.A., J. Am. Chem. Soc. 134, 14542 (2012).CrossRefGoogle Scholar
Lu, X.M., Rycenga, M., Skrabalak, S.E., Wiley, B., Xia, Y.N., Annu. Rev. Phys. Chem. 60, 167 (2009).CrossRefGoogle Scholar
Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hunyadi, S.E., Li, T., J. Phys. Chem. B 109, 13857 (2005).CrossRefGoogle Scholar
Sau, T.K., Rogach, A.L., Döblinger, M., Feldmann, J., Small 7, 2188 (2011).CrossRefGoogle Scholar
Xia, X., Zeng, J., Zhang, Q., Moran, C.H., Xia, Y., J. Phys. Chem. C 116, 21647 (2012).CrossRefGoogle Scholar
Yang, M., Alvarez-Puebla, R.A., Kim, H.-S., Aldeanueva-Potel, P., Liz-Marzán, L.M., Kotov, N.A., Nano Lett. 10, 4013 (2010).CrossRefGoogle Scholar
Cozzoli, P.D., Pellegrino, T., Manna, L., Chem. Soc. Rev. 35, 1195 (2006).CrossRefGoogle Scholar
Cardinal, M.F., Rodríguez-González, B., Alvarez-Puebla, R.A., Pérez-Juste, J., Liz-Marzán, L.M., J. Phys. Chem. C 114, 10417 (2010).CrossRefGoogle Scholar
Gühlke, M., Selve, S., Kneipp, J., J. Raman Spectrosc. 43, 1204 (2012).CrossRefGoogle Scholar
Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L.M., J. Mater. Chem. A 1, 20 (2013).CrossRefGoogle Scholar
Spuch-Calvar, M., Rodríguez-Lorenzo, L., Morales, M.P., Álvarez-Puebla, R.A., Liz-Marzán, L.M., J. Phys. Chem. C 113, 3373 (2008).CrossRefGoogle Scholar
Xie, S., Jin, M., Tao, J., Wang, Y., Xie, Z., Zhu, Y., Xia, Y., Chem. Eur. J. 18, 14974 (2012).CrossRefGoogle Scholar
Chen, G., Wang, Y., Tan, L.H., Yang, M., Tan, L.S., Chen, Y., Chen, H., J. Am. Chem. Soc. 131, 4218 (2009).CrossRefGoogle Scholar
Chen, G., Wang, Y., Yang, M., Xu, J., Goh, S.J., Pan, M., Chen, H., J. Am. Chem. Soc. 132, 3644 (2010).CrossRefGoogle Scholar
Rycenga, M., Camargo, P.H.C., Xia, Y., Soft Matter 5, 1129 (2009).CrossRefGoogle Scholar
Le Ru, E.C., Meyer, M., Blackie, E., Etchegoin, P.G., J. Raman Spectrosc. 39, 1127 (2008).CrossRefGoogle Scholar
Otto, A., J. Raman Spectrosc. 33, 593 (2002).CrossRefGoogle Scholar
Bastús, N.G., Comenge, J., Puntes, V.C., Langmuir 27, 11098 (2011).CrossRefGoogle Scholar
Rodríguez-Fernández, J., Pérez-Juste, J., García de Abajo, F.J., Liz-Marzán, L.M., Langmuir 22, 7007 (2006).CrossRefGoogle Scholar
Turkevich, J., Stevenson, P.C., Hillier, J., Disc. Faraday Soc. 11, 55 (1951).CrossRefGoogle Scholar
Rycenga, M., Xia, X., Moran, C.H., Zhou, F., Qin, D., Li, Z.-Y., Xia, Y., Angew. Chem. Int. Ed. 50, 5473 (2011).CrossRefGoogle Scholar
Sherry, L.J., Chang, S.-H., Schatz, G.C., Van Duyne, R.P., Wiley, B.J., Xia, Y., Nano Lett. 5, 2034 (2005).CrossRefGoogle Scholar
Kim, F., Connor, S., Song, H., Kuykendall, T., Yang, P., Angew. Chem. Int. Ed. 43, 3673 (2004).CrossRefGoogle Scholar
Liu, M.Z., Guyot-Sionnest, P., J. Phys. Chem. B 109, 22192 (2005).CrossRefGoogle Scholar
Sánchez-Iglesias, A., Pastoriza-Santos, I., Pérez-Juste, J., Rodríguez-González, B., García de Abajo, F.J., Liz-Marzán, L.M., Adv. Mater. 18, 2529 (2006).CrossRefGoogle Scholar
Ha, T.H., Koo, H.-J., Chung, B.H., J. Phys. Chem. C 111, 1123 (2006).CrossRefGoogle Scholar
Millstone, J.E., Wei, W., Jones, M.R., Yoo, H., Mirkin, C.A., Nano Lett. 8, 2526 (2008).CrossRefGoogle Scholar
Pastoriza-Santos, I., Liz-Marzán, L.M., Nano Lett. 2, 903 (2002).CrossRefGoogle Scholar
Rodríguez-Lorenzo, L., Álvarez-Puebla, R.A., García de Abajo, F.J., Liz-Marzán, L.M., J. Phys. Chem. C 114, 7336 (2009).CrossRefGoogle Scholar
Niu, W., Zheng, S., Wang, D., Liu, X., Li, H., Han, S., Chen, J., Tang, Z., Xu, G., J. Am. Chem. Soc. 131, 697 (2008).CrossRefGoogle Scholar
Seo, D., Yoo, C.I., Chung, I.S., Park, S.M., Ryu, S., Song, H., J. Phys. Chem. C 112, 2469 (2008).CrossRefGoogle Scholar
Tay, L.-L., Hulse, J., Kennedy, D., Pezacki, J.P., J. Phys. Chem. C 114, 7356 (2010).CrossRefGoogle Scholar
Whitmore, D.D., El-Khoury, P.Z., Fabris, L., Chu, P., Bazan, G.C., Potma, E.O., Apkarian, V.A., J. Phys. Chem. C 115, 15900 (2011).CrossRefGoogle Scholar
Taladriz-Blanco, P., Buurma, N.J., Rodriguez-Lorenzo, L., Pérez-Juste, J., Liz-Marzán, L.M., Herves, P., J. Mater. Chem. 21, 16880 (2011).CrossRefGoogle Scholar
Auyeung, E., Macfarlane, R.J., Choi, C.H.J., Cutler, J.I., Mirkin, C.A., Adv. Mater. 24, 5181 (2012).CrossRefGoogle Scholar
Chen, S.-Y., Lazarides, A.A., J. Phys. Chem. C 113, 12167 (2009).CrossRefGoogle Scholar
Gangwal, S., Cayre, O.J., Velev, O.D., Langmuir 24, 13312 (2008).CrossRefGoogle Scholar
Min, Y., Akbulut, M., Kristiansen, K., Golan, Y., Israelachvili, J., Nat. Mater. 7, 527 (2008).CrossRefGoogle Scholar
Lukach, A., Liu, K., Therien-Aubin, H., Kumacheva, E., J. Am. Chem. Soc. 134, 18853 (2012).CrossRefGoogle Scholar
Alvarez-Puebla, R.A., Liz-Marzán, L.M., Chem. Soc. Rev. 41, 43 (2012).CrossRefGoogle Scholar
Le Ru, E.C., Blackie, E., Meyer, M., Etchegoin, P.G., J. Phys. Chem. C 111, 13794 (2007).CrossRefGoogle Scholar
Wan, L.-J., Terashima, M., Noda, H., Osawa, M., J. Phys. Chem. B 104, 3563 (2000).CrossRefGoogle Scholar
Whelan, C.M., Smyth, M.R., Barnes, C.J., Langmuir 15, 116 (1998).CrossRefGoogle Scholar
Greeneltch, N.G., Blaber, M.G., Schatz, G.C., Van Duyne, R.P., J. Phys. Chem. C 8, 2554 (2013).CrossRefGoogle Scholar
McFarland, A.D., Young, M.A., Dieringer, J.A., Van Duyne, R.P., J. Phys. Chem. B 109, 11279 (2005).CrossRefGoogle Scholar
Arnold, M.D., Blaber, M.G., Opt. Express 17, 3835 (2009).CrossRefGoogle Scholar
Schmucker, A.L., Harris, N., Banholzer, M.J., Blaber, M.G., Osberg, K.D., Schatz, G.C., Mirkin, C.A., ACS Nano 4, 5453 (2010).CrossRefGoogle Scholar
Keren, S., Zavaleta, C., Cheng, Z., de la Zerda, A., Gheysens, O., Gambhir, S.S., Proc. Natl. Acad. Sci. USA 105, 5844 (2008).CrossRefGoogle Scholar
Frontiera, R.R., Henry, A.-I., Gruenke, N.L., Van Duyne, R.P., J. Phys. Chem. Lett. 2, 1199 (2011).CrossRefGoogle Scholar
Tyler, T.P., Henry, A.-I., Van Duyne, R.P., Hersam, M.C., J. Phys. Chem. Lett. 2, 218 (2011).CrossRefGoogle Scholar
Fang, Y., Seong, N.-H., Dlott, D.D., Science 321, 388 (2008).CrossRefGoogle Scholar
McMahon, J., Henry, A.-I., Wustholz, K., Natan, M., Freeman, R.G., Van Duyne, R.P., Schatz, G., Anal. Bioanal. Chem. 394, 1819 (2009).CrossRefGoogle Scholar
Wustholz, K.L., Henry, A.-I., McMahon, J.M., Freeman, R.G., Valley, N., Piotti, M.E., Natan, M.J., Schatz, G.C., Van Duyne, R.P., J. Am. Chem. Soc. 132, 10903 (2010).CrossRefGoogle Scholar
Haynes, C.L., Van Duyne, R.P., J. Phys. Chem. B 107, 7426 (2003).CrossRefGoogle Scholar
Lucas, M., Riedo, E., Rev. Sci. Instrum. 83, 061101/1 (2012).CrossRefGoogle Scholar
Pettinger, B., Schambach, P., Villagomez, C.J., Scott, N., Annu. Rev. Phys. Chem. 63, 379 (2012).CrossRefGoogle Scholar
Schmidt, D.A., Kopf, I., Bründermann, E., Laser Photon. Rev. 6, 296 (2012).CrossRefGoogle Scholar
Stadler, J., Oswald, B., Schmid, T., Zenobi, R., J. Raman Spectrosc. 44, 227 (2013).CrossRefGoogle Scholar
Jiang, N., Foley, E.T., Klingsporn, J.M., Sonntag, M.D., Valley, N.A., Dieringer, J.A., Seideman, T., Schatz, G.C., Hersam, M.C., Van Duyne, R.P., Nano Lett. 12, 5061 (2011).CrossRefGoogle Scholar
Sonntag, M.D., Klingsporn, J.M., Garibay, L.K., Roberts, J.M., Dieringer, J.A., Seideman, T., Scheidt, K.A., Jensen, L., Schatz, G.C., Van Duyne, R.P., J. Phys. Chem. C 116, 478 (2011).CrossRefGoogle Scholar
Steidtner, J., Pettinger, B., Phys. Rev. Lett. 100, 236101/1 (2008).CrossRefGoogle Scholar
Frontiera, R.R., Fang, C., Dasgupta, J., Mathies, R.A., Phys. Chem. Chem. Phys. 14, 405 (2012).CrossRefGoogle Scholar
Frontiera, R.R., Mathies, R.A., Laser Photon. Rev. 5, 102 (2011).CrossRefGoogle Scholar
Frontiera, R.R., Gruenke, N.L., Van Duyne, R.P., Nano Lett. 12, 5989 (2012).CrossRefGoogle Scholar
Berweger, S., Raschke, M., Anal. Bioanal. Chem. 396, 115 (2010).CrossRefGoogle Scholar
Cialla, D., Maerz, A., Boehme, R., Theil, F., Weber, K., Schmitt, M., Popp, J., Anal. Bioanal. Chem. 403, 27 (2012).CrossRefGoogle Scholar
Henkel, T.M., März, A., Popp, J., in Surface Enhanced Raman Spectroscopy, Schlucker, S., Ed. (Springer-Verlag, Germany, 2011), p. 173.Google Scholar