Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T15:35:48.809Z Has data issue: false hasContentIssue false

High-Performance YBCO-Coated Superconductor Wires

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This issue of MRS Bulletin provides an overview of the current status of research and development in the area of high-temperature superconductor (HTS) wires. High-temperature oxide superconductors, discovered in the late 1980s, are moving into the second generation of their development.The first generation relied on bismuth strontium calcium copper oxide, and the second generation is based on yttrium barium copper oxide, which has the potential to be less expensive and to perform better.The potential uses of HTS wires for electric power applications include underground transmission cables, oil-free transformers, superconducting magnetic-energy storage units, fault-current limiters, high-efficiency motors, and compact generators.Wires of 10–100 m in length can now be made, but material and processing issues must be solved before an optimized production scheme can be achieved.This issue covers a range of processing techniques using energetic beams, rolling, and laser and chemical methods to form wires with good superconducting properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

References

1Masur, L.J., Buczek, D.Harley, E.Kodenkandath, T.Li, X.Lynch, J.Nguyen, N.Rupich, M.Schoop, U.Scudiere, J.Siegal, E.Thieme, C.Verebelyi, D.Zhang, W. and Kellers, J.Physica C 392 (2003) p.989.CrossRefGoogle Scholar
2Dimos, D.Chaudhari, P. and Mannhart, J.Phys. Rev. B 41 (1990) p.4038.CrossRefGoogle Scholar
3Iijima, Y.Tanabe, N.Kohno, O. and Ikeno, Y.Appl. Phys. Lett. 60 (1992) p.769.CrossRefGoogle Scholar
4Wu, X.D., Foltyn, S.R., Arendt, P.N., Blumenthal, W.R., Campbell, I.H., Cotton, J.D., Coulter, J.Y., Hults, W.L., Maley, M.P., Safar, H.F., and Smith, J.L., Appl. Phys. Lett. 67 (1995) p.2397.CrossRefGoogle Scholar
5Goyal, A.Norton, D.P., Budai, J.D., Paranthaman, M.Specht, E.D.Kroeger, D.M.Christen, D.K.He, Q.Saffian, B.List, F.A.Lee, D.F.Martin, P.M.Klabunde, C.E.Hatfield, E. and Sikka, V.K.Appl. Phys. Lett. 69 (1996) p.1795.CrossRefGoogle Scholar
6Hasegawa, K.Fujino, K.Mukai, H.Konishi, M.Hayashi, K.Sato, K.Honjo, S.Sato, Y.Ishii, H. and Iwata, Y.Appl. Supercond. 4 (1996) p.487.CrossRefGoogle Scholar
7Ma, B.Koritala, R.E.Fisher, B.L.Uperty, K.K.Baurceanu, R.Dorris, S.E.Miller, D.J.Berghuis, P.Gray, K.E. and Balachandran, U.Physica C 403 (2004) p.183.CrossRefGoogle Scholar
8Prusseit, W.Nemetschek, R.Semerad, R.Numssen, K.Metzger, R.Hoffmann, C.Lumkemann, A.Bauer, M. and Kinder, H.Physica C 392 (2003) p.801.CrossRefGoogle Scholar
9Arendt, P.N. (private communication).Google Scholar
10Coated Conductor Development Roadmapping Workshop II: Workshop Proceedings, DOE/EE-000820404-CD, accessible at URL http://www.eere.energy.gov/superconductivity/pdfs/cc_workshop_proceedings10_3_03final.pdf (accessed July 2004).Google Scholar