Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T06:29:18.189Z Has data issue: false hasContentIssue false

High-Resolution 3D Imaging Microscopy Using Hard X-Rays

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The key strength of hard x-ray full-field microscopy is the large penetration depth of hard x-rays into matter, which allows one to image the interior of opaque objects. Combined with tomographic techniques, the three-dimensional inner structure of an object can be reconstructed without the need for difficult and destructive sample preparation. Projection microscopy and microtomography are now routinely available at synchrotron radiation sources. The resolution of these techniques is limited by that of the detector to 1 µm or slightly less. X-ray images and tomograms at higher spatial resolution can be obtained by x-ray optical magnification, for example, by using parabolic refractive x-ray lenses as a magnifying optic. Combining magnifying x-ray imaging with tomography allows one to reconstruct the three-dimensional structure of an object, such as a microprocessor chip, with resolution well below 1 µm. In x-ray scanning microscopy, the sample is scanned through a small-diameter beam. The great advantage of scanning microscopy is that x-ray analytical techniques such as fluorescence analysis, diffraction, and absorption spectroscopy can be used as contrast mechanisms in the microscope. In combination with tomography, fluorescence analysis makes it possible to reconstruct the distribution of different chemical elements inside an object (fluorescence microtomography), while combining absorption spectroscopy with tomography yields the distribution of different oxidation states of atomic species.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Schmahl, G., Synchrotron Radiat. News 16 (2003).Google Scholar
2Kak, A.C. and Slaney, M., Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).Google Scholar
3Raven, C., Snigirev, A., Snigireva, I., Spanne, P., Souvorov, S., and Kohn, V., Appl. Phys. Lett. 69 (1996) p. 1826.CrossRefGoogle Scholar
4Cloetens, P., Ludwig, W., Baruchel, J., Dyck, D. Van, Van Landuyt, J., Guigay, J.P., and Schlenker, M., Appl. Phys. Lett. 75 (1999) p. 2912.CrossRefGoogle Scholar
5Herman, G.T., Image Reconstruction from Projections (Academic Press, New York, 1980).Google Scholar
6Salvo, L., Cloetens, P., Maire, E., Zabler, S., Blandin, J.J., Buffière, J.Y., Ludwig, W., Boller, E., Bellet, D., and Josserond, C., Nucl. Instrum. Meth. B 200 (2003) p. 273.CrossRefGoogle Scholar
7Cloetens, P., Ludwig, W., Boller, E., Peyrin, F., Schlenker, M., and Baruchel, J., Image Anal. Stereol. 21 (Suppl. 1) (2002) p.S75.CrossRefGoogle Scholar
8Snigirev, A., Snigireva, I., Kohn, V., Kuznetsov, S., and Schelokov, I., Rev. Sci. Instrum. 66 (1995) p. 5486.CrossRefGoogle Scholar
9Hignette, O., Cloetens, P., Lee, W.-K., Ludwig, W., and Rostaing, G., J. Phys. IV (France) 104 (2003) p. 231.CrossRefGoogle Scholar
10Takeuchi, A., Suzuki, Y., and Takano, H., J. Phys. IV (France) 104 (2003) p. 235.CrossRefGoogle Scholar
11Kirkpatrick, P. and Baez, A., J. Opt. Soc. Am. 38 (1948) p. 766.CrossRefGoogle Scholar
12Schmahl, G., Synchrotron Radiat. News 16 (2003), pp. 3, 11, and 16.CrossRefGoogle Scholar
13David, C., Nöhammer, B., Solak, H.H., Glaus, F., Haas, B., Grubelnik, A., Dolocan, A., Ziegler, E., Hignette, O., Burghammer, M., Kaulich, B., Susini, J., Bongaerts, J.H.H., and van der Veen, J.F., J. Phys. IV (France) 104 (2003) p. 171.CrossRefGoogle Scholar
14Fabrizio, E. Di, Cojoc, D., Cabrini, S., Kaulich, B., Wilhein, T., and Susini, J., J. Phys. IV (France) 104 (2003) p. 177.Google Scholar
15Yasumoto, M., Tamura, S., Kamijo, N., Suzuki, Y., Awaji, M., Takeuchi, A., and Takano, H., J. Phys. IV (France) 104 (2003) p. 189.CrossRefGoogle Scholar
16Snigirev, A., Kohn, V., Snigireva, I., and Lengeler, B., Nature 384 (1996) p. 49.CrossRefGoogle Scholar
17Lengeler, B., Schroer, C.G., Richwin, M., Tmmler, J., Drakopoulos, M., Snigirev, A., and Snigireva, I., Appl. Phys. Lett. 74 (1999) p. 3924.CrossRefGoogle Scholar
18Lengeler, B., Schroer, C., T̈mmler, J., Benner, B., Richwin, M., Snigirev, A., Snigireva, I., and Drakopoulos, M., J. Synch. Radiat. 6 (1999) p. 1153.CrossRefGoogle Scholar
19Koch, A., Raven, C., Spanne, P., and Snigirev, A., J. Opt. Soc. Am. A 15 (1998) p. 1940.CrossRefGoogle Scholar
20Schroer, C.G., Kuhlmann, M., Hunger, U.T., G, T.F.̈nzler, Kurapova, O., Feste, S., Frehse, F., Lengeler, B., Drakopoulos, M., Somogyi, A., Simionovici, A.S., Snigirev, A., Snigireva, I., Schug, C., and Schröder, W.H., Appl. Phys. Lett. 82 (2003) p. 1485.CrossRefGoogle Scholar
21Schroer, C.G., Kuhlmann, M., Hunger, U.T., G̈nzler, T.F., Kurapova, O., Feste, S., Lengeler, B., Drakopoulos, M., Somogyi, A., Simionovici, A.S., Snigirev, A., and Snigireva, I., in Proc. 8th Int. Conf. on Synchrotron Radiation Instrumentation, edited by Warwick, T. (American Institute of Physics, Melville, NY, 2004), submitted for publication.Google Scholar
22Schroer, C.G., Benner, B., G, T.F.̈nzler, Kuhlmann, M., Lengeler, B., Schr, W.H.öder, Kuhn, A.J., Simionovici, A.S., Snigirev, A., and Snigireva, I., in Proc. SPIE Developments in X-Ray Tomography III, Vol. 4503, edited by Bonse, U. (SPIE—The International Society for Optical Engineering, Bellingham, WA, 2002) p. 230.Google Scholar
23Schroer, C.G., Appl. Phys. Lett. 79 (2001) p. 1912.CrossRefGoogle Scholar
24Trivedi, R. and Mason, J. T., Metall. Trans. A 22 (1991) p. 235.CrossRefGoogle Scholar
25Uesugi, K., Suzuki, Y., Yagi, N., Tsuchiyama, A., and Nakano, T., Nucl. Instrum. Meth. A 467–468 (2001) p. 853.CrossRefGoogle Scholar
26Takano, H., Susuki, Y., Uesugi, K., Takeuchi, A., and Yagi, N., in Proc. SPIE X-Ray Micro- and Nano-Focusing: Applications and Techniques II, Vol. 4499, edited by McNulty, I. (SPIE—The International Society for Optical Engineering, Bellingham, WA, 2001) p. 74.Google Scholar
27Salbu, B., Krekling, T., Lind, O.C., Oughton, D.H., Drakopoulos, M., Simionovici, A., Snigireva, I., Snigirev, A., Weitkamp, T., Adams, F., Janssens, K., and Kashparov, V.A., Nucl. Instrum. Meth. A 467–468 (2001) p. 1249.CrossRefGoogle Scholar
28Wang, S., Duewer, F., Kamath, S., Kelly, C., Lyon, A., Nill, K., Scott, D., Trapp, D., and Yun, W, “A Transmission X-Ray Microscope (TXM) for Non-Destructive 3D Imaging of ICs at Sub-100-nm Resolution,” Proc. 28th Int. Symp. for Testing and Failure Analysis (ASM International, Materials Park, Ohio, 2004).Google Scholar
29Xradia home page, http://www.xradia.com (accessed December 2003).Google Scholar
30Takeuchi, A., Uesugi, K., Takano, H., and Suzuki, Y., Rev. Sci. Instrum. 73 (2002) p. 4246.CrossRefGoogle Scholar
31Schroer, C.G., Meyer, J., Kuhlmann, M., Benner, B., Günzler, T.F., Lengeler, B., Rau, C., Weitkamp, T., Snigirev, A., and Snigireva, I., Appl. Phys. Lett. 81 (2002) p. 1527.CrossRefGoogle Scholar
32Lengeler, B., Schroer, C.G., Kuhlmann, M., Benner, B., Günzler, T.F., Kurapova, O., Somogyi, A., Snigirev, A., and Snigireva, I., in Proc. 8th Int. Conf. on Synchrotron Radiation Instrumentation, edited by Warwick, T. (American Institute of Physics, Melville, NY, 2004), submitted for publication.Google Scholar
33Koningsberger, D.C. and Prins, R., X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (John Wiley & Sons, New York, 1988).Google Scholar
34Schroer, C.G., Kuhlmann, M., Günzler, T.F., Lengeler, B., Richwin, M., Griesebock, B., Lützenkirchen-Hecht, D., Frahm, R., Ziegler, E., Mashayekhi, A., Haeffner, D., Grunwaldt, J.-D., and Baiker, A., Appl. Phys. Lett. 82 (2003) p. 3360.CrossRefGoogle Scholar
35Richwin, M., Zaeper, R., Lützenkirchen-Hecht, D., and Frahm, R., Rev. Sci. Instrum. 73 (2002) p. 1668.CrossRefGoogle Scholar
36Carroll, B.W. and Ostlic, D.A., An Introduction to Modern Astrophysics (Addison-Wesley, Reading, PA, 1996).Google Scholar
37Murray, J., Boesenberg, J.S., and Ebel, D.S., in Lunar and Planetary Science XXXIV [CD-ROM] (Lunar and Planetary Institute, Houston, 2003) p. 1999.Google Scholar
38NASA Cosmic Dust Catalog 15, L2036H18, http://www-curator.jsc.nasa.gov/dust/ cdcat15/L2036H18.PDF (accessed December 2003).Google Scholar
39Borbély, A., Csikor, F.F., Zabler, S., Cloetens, P., and Biermann, H., Mater. Sci. Eng. A 367 (2004) p. 40.CrossRefGoogle Scholar
40Cloetens, P., Boller, E., Ludwig, W., Baruchel, J., and Schlenker, M., Europhysics News, March/April (2001), p. 46.Google Scholar
41Cloetens, P., Ludwig, W., Helfen, L., Salvo, L., Mache, R., Schlenker, M., in Proc. SPIE Developments in X-Ray Tomography III, Vol. 4503, edited by Bonse, U. (SPIE–The International Society for Optical Engineering, Bellingham, WA, 2002) p. 82.Google Scholar