Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T15:16:46.888Z Has data issue: false hasContentIssue false

High-resolution direct-write patterning using focused ion beams

Published online by Cambridge University Press:  09 April 2014

Leonidas E. Ocola
Affiliation:
Center for Nanoscale Materials, Argonne National Laboratory; ocola@anl.gov
Chad Rue
Affiliation:
FEI Company; chad.rue@fei.com
Diederik Maas
Affiliation:
TNO, Delft; diederik.maas@tno.nl
Get access

Abstract

Over the last few years, significant improvements in sources, columns, detectors, control software, and accessories have enabled a wealth of new focused ion beam applications. In addition, modeling has provided many insights into ion-sample interactions and the resultant effects on the sample. With the knowledge gained, the community has found new ion-beam induced chemistries and ion-beam sources, allowing extending nanostructure fabrication and material deposition to smaller dimensions and better control for direct write and patterning. Insignificant proximity effects in resist-based ion beam lithography, combined with the availability of sub-nm ion spot sizes, opens the way to sub-10 nm structures and dense patterns. Additionally, direct-write ion beam nanomachining can process multilevel structures with arbitrary depths in one single process step, with all the information included in a single standard design file, thus enabling fabrication applications not achievable with any other technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kanaya, K., Kawakatsu, H., Matsui, S., Yamazaki, H., Optik 21, 399 (1964).Google Scholar
Drummond, I.W., Long, J.V.P., Nature 215, 950 (1967).CrossRefGoogle Scholar
Hill, A.R., Nature 218, 202 (1968).CrossRefGoogle Scholar
Volkert, C.A., Minor, A.M., MRS Bull. 32, 389 (2007).CrossRefGoogle Scholar
Allen, D.M., Shore, P., Evans, R.W., Fanara, C., O’Brien, W., Marson, S., O’Neill, W., CIRP Ann.–Manuf. Technol. 58, 647 (2009).Google Scholar
Gamo, K., Namba, S., Ultramicroscopy 15, 261 (1984).CrossRefGoogle Scholar
van Kan, J.A., Sanchez, J.L., Xu, B., Osipowicz, T., Watt, F., Nucl. Instrum. Methods Phys. Res. B 148, 1085 (1999).CrossRefGoogle Scholar
Tan, S., Livengood, R., Shima, D., Notte, J., McVey, S., J. Vac. Sci. Technol. B 28, C6F15 (2010).Google Scholar
Selinger, R.L., US Patent 4,310,743 (January 12, 1982).Google Scholar
Löschner, H., Stengl, G., Chalupka, A., Fegerl, J., Fischer, R., Hammel, E., Lammer, G., Malek, L., Nowak, R., Traher, C., Vonach, H., Wolf, P., Hill, R.W., J. Vac. Sci. Technol. B 11, 2409 (1993).Google Scholar
Melngailis, J., Nucl. Instrum. Methods Phys. Res. B 8081, 1271 (1993).CrossRefGoogle Scholar
Melngailis, J., Mondelli, A.A., Berry, I.L. III, Mohondro, R., J. Vac. Sci. Technol. B 16, 927 (1998).CrossRefGoogle Scholar
Henry, M.D., Shearn, M.J., Chhim, B., Scherer, A., Nanotechnology 21, 245303 (2010).CrossRefGoogle Scholar
Chekurov, N., Grigoras, K., Sainiemi, L., Peltonen, A., Tittonen, I., Franssila, S., J. Micromech. Microeng. 20, 085009 (2010).Google Scholar
Tripathi, S.K., Scanlan, D., O’Hara, N., Nadzeyka, A., Bauerdick, S., Peto, L., Cross, G.L.W., J. Micromech. Microeng. 22, 055005 (2012).CrossRefGoogle Scholar
Hildreth, O., Rykaczewski, K., Wong, C.P., J. Vac. Sci. Technol. B 30, 040603 (2012).CrossRefGoogle Scholar
Curtz, N., Koller, E., Zbinden, H., Decroux, M., Antognazza, L., Fischer, Ø., Gisin, N., Supercond. Sci. Technol. 23, 045015 (2010).Google Scholar
Nadzeyka, A., Peto, L., Bauerdick, S., Mayer, M., Keskinbora, K., Grévent, C., Weigand, M., Hirscher, M., Schütz, G., Microelectron. Eng. 98, 198 (2012).Google Scholar
Imre, A., Ocola, L.E., Rich, L., Klingfus, J., J. Vac. Sci. Technol. B 28, 304 (2010).CrossRefGoogle Scholar
Palacios, E., Ocola, L.E., Joshi-Imre, A., Bauerdick, S., Berse, M., Peto, L., J. Vac. Sci. Technol. B 28, C6I1 (2010).CrossRefGoogle Scholar
Ocola, L.E., Palacios, E., J. Vac. Sci. Technol. B 31, 06F401 (2013).CrossRefGoogle Scholar
Utke, I., Hoffmann, P., Melngailis, J., J. Vac. Sci. Technol. B 26, 1197 (2008).Google Scholar
Herschbein, S.B., Fischer, L.S., Kane, T.L., Tenney, M.P., Shore, A.D., Proc. ISTFA (1998), pp. 127130.Google Scholar
Lipp, S., Frey, L., Franz, G., Demm, E., Petersen, S., Ryssel, H., Nucl. Instrum. Methods Phys. Res. B 106, 630 (1995).Google Scholar
Edinger, K., Kraus, T., Microelectron. Eng. 5758, 263 (2001).CrossRefGoogle Scholar
Fu, X.L., Li, P.G., Jin, A.Z., Chen, L.M., Yang, H.F., Li, L.H., Tang, W.H., Cui, Z., Microelectron. Eng. 7879, 29 (2005).Google Scholar
Datta, A., Wu, Y.-R., Wang, Y.L., Appl. Phys. Lett. 75 (17), 2677 (1999).CrossRefGoogle Scholar
Chyr, I., Steckl, A.J., J. Vac. Sci. Technol. B 19 (6), 2547 (2001).Google Scholar
Rue, C., Shepherd, R., Hallstein, R., Livengood, R., Proc. ISTFA (2007), pp. 312318.Google Scholar
Wu, H., Ferranti, D., Stern, L.A., Xia, D., Proc. ISTFA (2013), pp. 118122.Google Scholar
Chen, P., Van Veldhoven, E., Sanford, C.A., Salemink, H.W.M., Maas, D.J., Smith, D.A., Rack, P.D., Alkemade, P.F.A., Nanotechnology 21, 455302 (2010).Google Scholar
Tan, S., Livengood, R., Greenzweig, Y., Drezner, Y., Shima, D., J. Vac. Sci. Technol. B 30, 06F606 (2012).CrossRefGoogle Scholar
Ward, E.W., Notte, J., Economou, N.P., J. Vac. Sci. Technol. B 24, 2871 (2006).Google Scholar
Tan, S., Livengood, R., Hack, P., Hallstein, R., Shima, D., Notte, J., McVey, S., J. Vac. Sci. Technol. B 29, 06F604 (2011).Google Scholar
Hill, R., Faridur Rahman, F.H.M., Nucl. Instrum. Methods Phys. Res. A 645, 96 (2011).CrossRefGoogle Scholar
Alkemade, P.F.A., Koster, E.M., van Veldhoven, E., Maas, D.J., Scanning 34, 90 (2012).CrossRefGoogle Scholar
Sidorkin, V., van Veldhoven, E., van der Drift, E., Alkemade, P., Salemink, H., Maas, D., J. Vac. Sci. Technol. B 27, L18 (2009).Google Scholar
Maas, D.J., van der Drift, E.W., van Veldhoven, E., Meessen, J., Rudneva, M., Alkemade, P.F.A., “Nano-Engineering with a Focused Helium Ion Beam,” in Mater. Res. Soc. Symp. Proc. 1354, Marletta, G., Öztarhan, A., Baglin, J., Ila, D., Eds. (Materials Research Society, Warrendale, PA, 2011), p. 33.Google Scholar
Li, W.-D., Wu, W., Williams, R.S. J. Vac. Sci. Technol. B 30, 06F304 (2012).CrossRefGoogle Scholar
Melli, M., Polyakov, A., Gargas, D., Huynh, C., Scipioni, L., Bao, W., Ogletree, D.F., Schuck, P.J., Cabrini, S., Weber-Bargioni, A., Nano Lett. 13, 2687(2013).Google Scholar
Livengood, R., Tan, S., Greenzweig, Y., Notte, J., McVey, S., J. Vac. Sci. Technol. B 27, 3244 (2009).Google Scholar
Aramaki, F., Ogawa, T., Matsuda, O., Kozakai, T., Sugiyama, Y., Obaa, H., Yasaka, A., Amano, T., Shigemura, H., Suga, O., Proc. SPIE 7969, 79691C (2011).Google Scholar
Rudneva, M., van Veldhoven, E., Malladi, S., Maas, D., Zandbergen, H.W., “Application of the Helium Ion Microscope as a Sculpting Tool for Nanosamples,” in Mater. Res. Soc. Symp. Proc. 1455, Shinozuka, Y., Kanayama, T., Haglund, R.F. Jr., Eds. (Materials Research Society, Warrendale, PA, 2012).Google Scholar
Wirtz, T., Vanhove, N., Pillatsch, L., Dowsett, D., Sijbrandij, S., Notte, J., Appl. Phys. Lett. 101, 041601 (2012).Google Scholar
Drezner, Y., Greenzweig, Y., Fishman, D., van Veldhoven, E., Maas, D.J., Raveh, A., Livengood, R.H., J. Vac. Sci. Technol. B 30, 041210 (2012).Google Scholar