Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T03:31:18.920Z Has data issue: false hasContentIssue false

III–V Nitrides: A New Age for Optoelectronics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

With the advent of bright-blue light-emitting diodes in 1994, violet laser diodes in 1996, and vertical-cavity surface-emitting lasers at telecommunications wavelengths in 2000, all based on nitride-containing III–V compounds, a new age for optoelectronics began. Despite their technological success, III-nitride materials still hold some mysteries. Compared with conventional III–V semiconductors, even commercial nitride devices are of poor material quality. Due to their heteroepitaxial origin, their crystals are full of dislocations. Electrical properties, particularly in the case of p-type material, are fairly unsatisfactory. Still, light-emitting diodes with extremely high brightness and lasers with high power and good lifetime can be produced with III–V nitride compounds. In this review, we will give an overview of the essential properties of nitride materials for optoelectronic devices, their current development status, open questions, and recent device achievements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pankove, J.I. and Norris, P.E., RCA Rev. 33 (1972) p. 377.Google Scholar
2.Akasaki, I., Amano, H., Kito, M., and Hiramatsu, K., J. Lumin. 48–49 (1991) p. 666.CrossRefGoogle Scholar
3.Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett. 62 (1993) p. 2390.CrossRefGoogle Scholar
4.Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64 (1994) p. 1687.CrossRefGoogle Scholar
5.Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S.-I., Appl. Phys. Lett. 67 (1995) p. 1868.CrossRefGoogle Scholar
6.Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S.-I., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys. Part 2: Lett. 34 (1995) p. L1332.CrossRefGoogle Scholar
7.Kato, E., Noguchi, H., Nagai, M., Okuyama, H., Kijima, S., and Ishibashi, A., Electron. Lett. 34 (1998) p. 282.CrossRefGoogle Scholar
8.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 69 (1996) p. 4056.CrossRefGoogle Scholar
9.Weyers, M., Sato, M., and Ando, H., Jpn. J. Appl. Phys., Part 2: Lett. 31 (1992) p. L853.CrossRefGoogle Scholar
10.Yun, F., Reshchikov, M.A., King, T., Morkoc, H., Novak, S.W., and Wei, L., J. Appl. Phys. 92 (2002) p. 4837.CrossRefGoogle Scholar
11.Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, H., and Schaff, W.J., Appl. Phys. Lett. 80 (25) (2002) p. 4741.CrossRefGoogle Scholar
12.Wu, J., Shan, W., and Walukiewicz, W., Semicond. Sci. Technol. 17 (8) (2002) p. 860.CrossRefGoogle Scholar
13.Porowski, S., Mater. Sci. Eng., B 44 (1997) p. 407.CrossRefGoogle Scholar
14.Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48 (1986) p. 353.CrossRefGoogle Scholar
15.Kelly, M.K., Vaudo, R.P., Phanse, V.M., Görgens, L., Ambacher, O., and Stutzmann, M., Jpn. J. Appl. Phys., Part 2: Lett. 38 (1999) p. L217.CrossRefGoogle Scholar
16.Nam, O.-H., Bremser, M.D., Zheleva, T.S., and Davis, R.F., Appl. Phys. Lett. 71 (1997) p. 2638.CrossRefGoogle Scholar
17.Fischer, S., Wetzel, C., Haller, E.E., and Meyer, B.K., Appl. Phys. Lett. 67 (1995) p. 1298.CrossRefGoogle Scholar
18.Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31 (1992) p. 1258.CrossRefGoogle Scholar
19.Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys., Part 2: Lett. 28 (1989) p. L2112.CrossRefGoogle Scholar
20.Im, J.S., Moritz, A., Steuber, F., Härle, V., Scholz, F., and Hangleiter, A., Appl. Phys. Lett. 70 (1997) p. 631.CrossRefGoogle Scholar
21.Nakamura, S., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys., Part 2: Lett. 30 (1991) p. L1708.CrossRefGoogle Scholar
22.Grandjean, N., Damilano, B., and Massies, J., in GaN and Related Alloys—2000, edited by Wetzel, C., Shur, M.S., Mishra, U.K., Gil, B., and Kishino, K. (Mater. Res. Soc. Symp. Proc. 639, Warrendale, PA, 2001) p. G12.1.1.Google Scholar
23.Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56 (1997) p. R10024.CrossRefGoogle Scholar
24.Mendez, E., Bastard, G., Chang, L., Esaki, L., Morkoc, H., and Fischer, R., Phys. Rev. B 26 (1982) p. 7101.CrossRefGoogle Scholar
25.Im, J.S., Kollmer, H., Off, J., Sohmer, A., Scholz, F., and Hangleiter, A., Phys. Rev. B 57 (1998) p. R9435.Google Scholar
26.Skierbiszewski, C., Semicond. Sci. Technol. 17 (2002) p. 803.CrossRefGoogle Scholar
27. Cree Lighting Home Page, http://www.cree.com/cree_lighting (accessed February 2003).Google Scholar
28.Mukai, T., Yamada, M., and Nakamura, S., Jpn. J. Appl. Phys. 38 (1999) p. 3976.CrossRefGoogle Scholar
29.Wierer, J.J., Steigerwald, D.A., Krames, M.R., O'Shea, J.J., Ludowise, M.J., Christenson, G., Shen, Y.-C., Lowery, C., Martin, P.S., Subramanya, S., Götz, W., Gardner, N.F., Kern, R.S., and Stockman, S.A., Appl. Phys. Lett. 78 (2001) p. 3379.CrossRefGoogle Scholar
30.Osinski, M., Zeller, J., Chiu, P.-C., Phillips, B.S., and Barton, D.L., Appl. Phys. Lett. 69 (1996) p. 898.CrossRefGoogle Scholar
31.Krames, M.R., Ochial-Holcomb, M., Höfler, G.E., Carter-Coman, C., Chen, E.I., Tan, I.-H., Grillot, P., Gardner, N.F., Chul, H.C., Huang, J.-W., Stockman, S.A., Kish, F.A., Craford, M.G., Tan, T.S., Kocot, C.P., Hueschen, M., Posselt, J., Loh, B., Sasser, G., and Collins, D., Appl. Phys. Lett. 75 (1999) p. 2365.CrossRefGoogle Scholar
32.Schlotter, P., Schmidt, R., and Schneider, J., Appl. Phys. A 64 (1997) p. 417.CrossRefGoogle Scholar
33.Hide, F., Kozodoy, P., DenBaars, S.P., and Heeger, A.J., Appl. Phys. Lett. 70 (1997) p. 2664.CrossRefGoogle Scholar
34.Nagahama, S.-I., Iwasa, N., Senoh, M., Matsushita, T., Sugimoto, Y., Kiyoku, H., Kozaki, T., Sano, M., Matsumura, H., Umemoto, H., Chocho, K., and Mukai, T., Jpn. J. Appl. Phys., Part 2: Lett. 39 (2000) p. L647.CrossRefGoogle Scholar
35.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Matsushita, T., and Mukai, T., Appl. Phys. Lett. 76 (2000) p. 22.CrossRefGoogle Scholar
36.Akasaki, I., Sota, S., Sakai, H., Tanaka, T., Koike, M., and Amano, H., Electron. Lett. 32 (1996) p. 1105.CrossRefGoogle Scholar
37.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Jpn. J. Appl. Phys., Part 2: Lett. 37 (1998) p. L627.CrossRefGoogle Scholar
38.Iwata, K., Nakano, E., Hosoda, A., Oishi, K., Ohshima, K., Ito, F., Kondo, T., Ohgo, T., Nakagawa, E., Hayami, A., and Itonaga, M., Jpn. J. Appl. Phys. 40 (2001) p. 1637.CrossRefGoogle Scholar
39.Riechert, H., Ramakrishnan, A., and Steinle, G., Semicond. Sci. Technol. 17 (2002) p. 892.CrossRefGoogle Scholar