Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T04:30:46.041Z Has data issue: false hasContentIssue false

Industrial applications of ultrafast laser processing

Published online by Cambridge University Press:  06 December 2016

Eric Mottay
Affiliation:
Amplitude Systemes, France; emottay@amplitude-systemes.com
Xinbing Liu
Affiliation:
Panasonic Boston Laboratory, USA; xinbing.liu@us.panasonic.com
Haibin Zhang
Affiliation:
Electro Scientific Industries, USA; zhangh@esi.com
Eric Mazur
Affiliation:
Harvard University, USA; mazur@seas.harvard.edu
Reza Sanatinia
Affiliation:
Harvard University, USA; sanatinia@g.harvard.edu
Wilhelm Pfleging
Affiliation:
Karlsruhe Institute of Technology, Germany; wilhelm.pfleging@kit.edu
Get access

Abstract

Industrial ultrafast lasers are a key component of many new industrial manufacturing processes. The virtually athermal nature of the laser–matter interaction process enables high-quality material processing for many different materials with feature size reaching into the nanometer scale. Advances in laser average power and beam-delivery technology have significantly improved the throughput and productivity of real-life industrial and medical applications. In this article, we present key examples of laser processing, including drilling, cutting, and surface processing. In particular, we describe how ultrafast lasers can improve vision in patients, extend battery lifetime, improve the efficiency of solar cells and infrared detectors, or be applied in the printing or microelectronics industries. These examples demonstrate how further developments rely on a combination of laser technology, beam handling and delivery, and laser–matter interaction processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eidam, T., Hanf, S., Seise, E., Andersen, T.V., Gabler, T., Wirth, C., Schreiber, T., Limpert, J., Tünnermann, A., Opt. Lett. 35, 94 (2010).Google Scholar
Negel, J.-P., Loescher, A., Voss, A., Bauer, D., Sutter, D., Killi, A., Ahmed, M.A., Graf, T., Opt. Express 23, 21064 (2015).Google Scholar
Russbueldt, P., Mans, T., Weitenberg, J., Hoffmann, H.D., Poprawe, R., Opt. Lett. 35, 4169 (2010).Google Scholar
Liu, X., Proc. SPIE Int. Soc. Opt. Eng. 5713 (2005), p. 372.Google Scholar
Herzig, H.P., Ed., Micro-Optics: Elements, Systems and Applications (CRC Press, Philadelphia, 1997).CrossRefGoogle Scholar
Finn, D.S., Lin, Z., Kleinert, J., Darwin, M.J., Zhang, H., J. Laser Appl. 27, 032004 (2015), doi:10.2351/1.4916979.Google Scholar
Zhang, H., “Laser Based Micro Fabrication Systems for Electronics Packaging,” presented at Semicon, Taiwan, September 7–9, 2016.Google Scholar
Zhang, H., “Laser Processing Enables Smaller, Faster Mobile Devices,” Industrial Laser Solutions 30 (3) (2015), http://www.industrial-lasers.com/articles/print/volume-30/issue-3/features/laser-processing-enables-smaller-faster-mobile-devices.html.Google Scholar
Chichkov, B.N., Momma, C., Nolte, S., Von Alvensleben, F., Tünnermann, A., Appl. Phys. A 63, 109 (1996).Google Scholar
Bechtold, P., Hohenstein, R., Schmidt, M., Opt. Lett. 38, 2934 (2013).Google Scholar
Cutler, D., Pailthorp, R., Unrath, M., Richardson, T., Cable, A., “Multi-Tool Positioning System,” US Patent 5,847,960 (1998).Google Scholar
Zhang, H., Yang, C., Unrath, M.A., Orrick, M., US Patent Application US20160250714A1.Google Scholar
Gattass, R.R., Mazur, E., Nat. Photonics 2, 219 (2008).Google Scholar
Bonse, J., Krüger, J., Höhm, S., Rosenfeld, A., J. Laser Appl. 24 (4), 042006 (2012).Google Scholar
Vorobyev, A.Y., Guo, C., Laser Photon. Rev. 7 (3), 385 (2013).CrossRefGoogle Scholar
Her, T.-H., Finlay, R.J., Wu, C., Deliwala, S., Mazur, E., Appl. Phys. Lett. 73, 1673 (1998).Google Scholar
Shen, M., Carey, J.E., Crouch, C.H., Kandyla, M., Stone, H.A., Mazur, E., Nano Lett. 8, 2087 (2008).Google Scholar
Sarnet, T., Carey, J.E., Mazur, E., AIP Conf. Proc. 1464 (2012), p. 219.Google Scholar
Sher, M.-J., Winkler, M.T., Mazur, E., MRS Bull. 36 (6), 439 (2011).CrossRefGoogle Scholar
Franta, B., Sher, M.-J., Lin, Y.-T., Phillips, K.C., Mazur, E., Proc. SPIE Int. Soc. Opt. Eng. 8243, 82431D (2012).Google Scholar
Huang, Z., Carey, J.E., Liu, M., Guo, X., Mazur, E., Campbell, J.C., Appl. Phys. Lett. 89 (3), 033506 (2006).Google Scholar
Lin, Y.-T., Mangan, N., Marbach, S., Schneider, T.M., Deng, G., Zhou, S., Brenner, M.P., Mazur, E., Appl. Phys. Lett. 106 (6), 062105 (2015).CrossRefGoogle Scholar
Luo, X., Zhang, S., Wei, S.-H., Phys. Rev. Lett. 90 (2), 026103 (2003).CrossRefGoogle Scholar
Goodenough, J.B., Kim, Y., Chem. Mater. 22 (3), 587 (2010).Google Scholar
Scrosati, B., Garche, J., J. Power Sources 195 (9), 2419 (2010).Google Scholar
Amatucci, A., Pasquier, A.D., Blyr, A., Zheng, T., Tarascon, J.-M., Electrochim. Acta 45, 255 (1999).CrossRefGoogle Scholar
Wood, D.L., Li, J.L., Daniel, C., J. Power Sources 275, 234 (2015).CrossRefGoogle Scholar
Singh, M., Kaiser, J., Hahn, H., J. Electrochem. Soc. 162 (7), A1196 (2015).Google Scholar
Pfleging, W., Pröll, J., J. Mater. Chem. A 2 (36), 14918 (2014).Google Scholar
Mangang, M., Seifert, H.J., Pfleging, W., J. Power Sources 304, 24 (2016), http://dx.doi.org/10.1016/j.jpowsour.2015.10.086.Google Scholar
Proll, J., Kim, H., Pique, A., Seifert, H.J., Pfleging, W., J. Power Sources 255, 116 (2014).CrossRefGoogle Scholar
Smyrek, P., Proll, J., Seifert, H.J., Pfleging, W., J. Electrochem. Soc. 163 (2), A19 (2016).Google Scholar
Long, J.W., Dunn, B., Rolison, D.R., White, H.S., Chem. Rev. 104 (10), 4463 (2004).Google Scholar
Notten, P.H.L., Roozeboom, F., Niessen, R.A.H., Baggetto, L., Adv. Mater. 19 (24), 4564 (2007).Google Scholar
Oudenhoven, J.F.M., Baggetto, L., Notten, P.H.L., Adv. Energy Mater. 1 (1), 10 (2011).Google Scholar
Ferrari, S., Loveridge, M., Beattie, S.D., Jahn, M., Dashwood, R.J., Bhagat, R., J. Power Sources 286, 25 (2015).CrossRefGoogle Scholar
Smyrek, P., Pröll, J., Rakebrandt, J.H., Seifert, H.J., Pfleging, W., Proc. SPIE Int. Soc. Opt. Eng. 9351, 93511D (2015).Google Scholar
Pfleging, W., Mangang, M., Zheng, Y., Smyrek, P., Pröll, J., LIA Today 24, 12 (2016).Google Scholar
Pfleging, W., Zheng, Y., Mangang, M., Bruns, M., Smyrek, P., Proc. SPIE Front. Ultrafast Opt. Biomed., Sci., Ind. Appl. XVI 9740 (2016). doi:10.1117/ 12.2212041.Google Scholar
Kymionis, G.D., Kankariya, V.P., Plaka, A.D., Reinstein, D.Z., J. Refract Surg. 28 (12), 912 (2012).Google Scholar
Shah, R., Shah, S., Sengupta, S., J. Cataract Refract. Surg. 37 (1), 127 (2011).Google Scholar
Donaldson, K.E., Braga-Mele, R., Cabot, F., Davidson, R., Dhaliwal, D.K., Hamilton, R., Jackson, M., Patterson, L., Stonecipher, K., Yoo, S.H., ASCRS Refractive Cataract Surgery Subcommittee, J. Cataract Refract. Surg. 39 (11), 1753 (2013).Google Scholar