Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T02:52:39.791Z Has data issue: false hasContentIssue false

Inkjet Printing of Highly Loaded Particulate Suspensions

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Inkjet printing is an attractive method for patterning and fabricating objects directly from design or image files without the need for masks, patterns, or dies. In order to achieve this with metals or ceramics, it is often necessary to print them as highly concentrated suspensions of powders in liquids. Such liquid suspensions must have physical properties appropriate to the inkjet delivery mechanism. These properties are presented using a nondimensional formalism to illustrate the requirements for both drop formation and spreading on impact. Further critical issues relevant to inkjet printing of particulate suspensions are discussed and illustrated with experiments on a model alumina-containing colloidal suspension.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sachs, E., Cima, M., Williams, P., Brancazio, D., and Cornie, J., ASME J. Eng. Ind. 114 (1992) p. 481.CrossRefGoogle Scholar
2.Yoo, J., Cho, K., Bae, W., Cima, M., and Suresh, S., J. Am. Ceram. Soc. 81 (1998) p. 21.CrossRefGoogle Scholar
3.Teng, W.D., Edirisinghe, M.J., and Evans, J.R.G., J. Am. Ceram. Soc. 80 (1997) p. 486.CrossRefGoogle Scholar
4.Xiang, Q.F., Evans, J.R.G., Edirisinghe, M.J., and Blazdell, P.F., Proc. Inst. Mech. Eng. B-J. Eng. Manuf. 211 (1997) p. 211.CrossRefGoogle Scholar
5.Slade, C.E. and Evans, J.R.G., J. Mater. Sci. Lett. 17 (1998) p. 1669.CrossRefGoogle Scholar
6.Mott, M., Song, J.H., and Evans, J.R.G., J. Am. Ceram. Soc. 82 (1999) p. 1653.CrossRefGoogle Scholar
7.Fromm, J.E., IBM J. Res. Dev. 28 (1984) p. 322.CrossRefGoogle Scholar
8.Dijksman, J.F., J. Fluid Mech. 139 (1984) p. 173.CrossRefGoogle Scholar
9.Reis, N. and Derby, B., in Solid Freeform and Additive Fabrication—2000, edited by Danforth, S.C., Dimos, D., and Prinz, F.B. (Mater. Res. Soc. Symp. Proc. 625, Warrendale, PA, 2000) p. 117.Google Scholar
10.Pasandideh-Fard, M., Qiao, Y.M., Chandra, S., and Mostaghimi, J., Phys. Fluids 8 (1996) p. 650.CrossRefGoogle Scholar
11.Snow, C.D. and Hadfield, M., Proc. R. Soc. London 373 (1981) p. 419.Google Scholar
12.Lewis, J.A., J. Am. Ceram. Soc. 83 (2000) p. 2341.CrossRefGoogle Scholar
13.Ring, T.A., Fundamentals of Ceramic Powder Processing and Synthesis (Academic Press, London, 1996).Google Scholar
14.Bergstrom, L., J. Am. Ceram. Soc. 79 (1996) p. 3033.CrossRefGoogle Scholar
15.Kaye, B.H., Powder Mixing (Chapman & Hall, London, 1997).CrossRefGoogle Scholar
16.Seerden, K.A.M., Reis, N., Evans, J.R.G., Grant, P.S., Halloran, J.W., and Derby, B., J. Am. Ceram. Soc. 84 (2001) p. 2514.CrossRefGoogle Scholar
17.Ainsley, C., Reis, N., and Derby, B., J. Mater. Sci. 37 (2002) p. 3155.CrossRefGoogle Scholar
18.Reis, N., PhD thesis, University of Oxford, 2002.Google Scholar
19.Zhao, X., Evans, J.R.G., Edirisinghe, M.J., and Song, J.H., J. Mater. Sci. 37 (2002) p. 1987.CrossRefGoogle Scholar
20.Derby, B., Lee, D.H., Wang, T., and Hall, D., in Rapid Prototyping Technologies, edited by Pique, A., Holmes, A.S., and Dimos, D.B. (Mater. Res. Soc. Symp. Proc. 758, Warrendale, PA, 2003) p. 113.Google Scholar