Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T22:44:05.088Z Has data issue: false hasContentIssue false

Interface Passivation for Silicon Dioxide Layers on Silicon Carbide

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Silicon carbide is a promising semiconductor for advanced power devices that can outperform Si devices in extreme environments (high power, high temperature, and high frequency). In this article, we discuss recent progress in the development of passivation techniques for the SiO2/4H-SiC interface critical to the development of SiC metal oxide semiconductor field-effect transistor (MOSFET) technology. Significant reductions in the interface trap density have been achieved, with corresponding increases in the effective carrier (electron) mobility for inversion-mode 4H-SiC MOSFETs. Advances in interface passivation have revived interest in SiC MOSFETs for a potentially lucrative commercial market for devices that operate at 5 kV and below.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Materials for High-Temperature Semiconductor Devices, National Research Council Report NMAB-747 (National Academy Press, Washington, DC, 1995).Google Scholar
2.Iwami, M., Nucl. Instr. Methods Phys. Res., Sect. A 466 (2001) p. 406.Google Scholar
3.Chow, T.P., Khemka, V., Fedison, J., Ramungul, N., Matocha, K., Tang, Y., and Gutman, R.J., Solid-State Electron. 44 (2001) p. 277.CrossRefGoogle Scholar
4.Cooper, J.A., Melloch, M.R., Singh, R., Agarwal, A., and Palmour, J.W., IEEE Trans. Electron Devices 49 (4) (2002) p. 658.CrossRefGoogle Scholar
5.Baliga, B.J., IEEE Electron Device Lett. 10 (1989) p. 455.CrossRefGoogle Scholar
6. Cree Inc., DARPAWide-Bandgap PI Review Meeting, May 1114, 2004, Monterey, CA.Google Scholar
7.Saks, N.S. and Agarwal, A.K., Appl. Phys. Lett. 77 (2000) p. 3281.CrossRefGoogle Scholar
8.Chatty, K., Banerjee, S., Chow, T.P., Gutmann, R.J., Arnold, E., and Alok, D., Mater. Sci. Forum 389–393 (2002) p. 1041.Google Scholar
9.Schorner, R., Friedrichs, P., Peters, D., and Stephani, D., IEEE Electron Device Lett. 20 (1999) p. 241.Google Scholar
10.Chung, G., Tin, C.C., Won, J.H., and Williams, J.R., Mater. Sci. Forum 338–342 (2000) p. 1097.Google Scholar
11.Das, M.K., Um, B.S., and Cooper, J.A., Mater. Sci. Forum 338–342 (2000) p. 1069.Google Scholar
12.Afanasev, V.V., Bassler, M., Pensl, G., and Schulz, M., Phys. Status Solidi A 162 (1997) p. 321.3.0.CO;2-F>CrossRefGoogle Scholar
13.Afanas'ev, V.V., Microelectron. Eng. 48 (1999) p. 241.Google Scholar
14.Chung, G., Tin, C.C., Williams, J.R., McDonald, K., Weller, R.A., Ventra, M. Di, Pantelides, S.T., and Feldman, L.C., Appl. Phys. Lett. 76 (13) (2000) p. 1713.Google Scholar
15.Afanas'ev, V.V., Stesmans, A., Ciobanu, F., Pensl, G., Cheong, K.Y., and Dimitrijev, S., Appl. Phys. Lett. 82 (4) (2003) p. 568.Google Scholar
16.Li, H., Dimitrijev, S., Harrison, H.B., and Sweatman, D., Appl. Phys. Lett. 70 (15) (1997) p. 2028.Google Scholar
17.Lipkin, L.A., Das, M.K., and Palmour, J.W., Mater. Sci. Forum 389–393 (2002) p. 985.Google Scholar
18.Chung, G., Tin, C.C., Williams, J.R., McDonald, K., Chanana, R.K., Weller, R.A., Pantelides, S.T., Holland, O.W., Feldman, L.C., Das, M.K., and Palmour, J.W., IEEE Electron Device Lett. 22 (4) (2001) p. 176.Google Scholar
19.Lu, C.-Y., Cooper, J.A., Chung, G., Williams, J.R., McDonald, K., and Feldman, L.C., Mater. Sci. Forum 389–393 (2002) p. 977.Google Scholar
20.Das, M.K., Mater. Sci. Forum 457–460 (2004) p. 1275.CrossRefGoogle Scholar
21.McDonald, K., PhD dissertation, Vanderbilt University (2001).Google Scholar
22.Chung, G., Williams, J.R., McDonald, K., and Feldman, L.C., J. Phys. Condens. Matter 16 (2004) p. 1857.Google Scholar
23.Cooper, J.A., Phys. Status Solidi A 162 (1997) p. 305.3.0.CO;2-7>CrossRefGoogle Scholar
24.Pierret, R.F., Field Effect Devices, Volume IV of The Modular Series on Solid State Devices, 2nd Ed., edited by Neudeck, G. W. and Pierret, R.F. (Addison-Wesley, Boston, 1990).Google Scholar
25.Chang, K.-C., Cao, Y., Porter, L.M., Bentley, J., Dhar, S., Feldman, L. C., and Williams, J.R., “High-resolution elemental profiles of the silicon sioxide/4H-silicon carbide interface,” J. Appl. Phys. (2004) submitted.Google Scholar
26.McDonald, K., Feldman, L.C., Weller, R.A., Chung, G.Y., Tin, C.C., and Williams, J. R., J. Appl. Phys. 93 (2003) p. 2257.CrossRefGoogle Scholar
27.Jamet, P. and Dimitrijev, S., Appl. Phys. Lett. 79 (2001) p. 323.Google Scholar
28.Virojanadara, C. and Johansson, L.I., J. Phys. Condens. Matter 16 (2004) p. 3435.CrossRefGoogle Scholar
29.von Bardeleben, H.J., Cantin, J.L., Vickridge, I.C., Song, Y., Dhar, S., Feldman, L.C., Williams, J.R., Ke, L., Shishkin, Y., Devaty, R.P., and Choyke, W.J., “Modification of the oxide/semiconductor interface by high-temperature NO treatments: a combined EPR, NRA, and XPS study on oxidized porous and bulk n-type 4H-SiC,” presented at the European Conf. on SiC and Related Materials (Bologna, Italy, October 2004).Google Scholar
30.Williams, J.R., Isaacs-Smith, T., Wang, S., Ahyi, C., Lawless, R.M., Tin, C.C., Dhar, S., Franceschetti, A., Pantelides, S.T., Feldman, L.C., Chung, C., and Chisholm, M., in Fundamentals of Novel Oxide-Semiconductor Interfaces, edited by Abernathy, C.R., Gusev, E.P., Schlom, D., and Stemmer, S. (Mater. Res. Soc. Symp. Proc. 786, Warrendale, PA, 2004) p. 371.Google Scholar
31.Dhar, S., PhD dissertation, Vanderbilt University (2004).Google Scholar
32.Fukuda, K., Suzuki, S., Tanaka, T., and Arai, K., Appl. Phys. Lett. 76 (12) (2000) p. 1585.Google Scholar
33.Senzaki, J., Kojima, K., Harada, S., Kosugi, R., Senzaki, S., Suzuki, T., and Fukuda, K., IEEE Electron Device Lett. 23 (1) (2002) p. 13.Google Scholar
34.Song, Y., Dhar, S., Feldman, L.C., Chung, G., and Williams, J.R., J. Appl. Phys. 95 (2004) p. 4953.Google Scholar
35.Trimaille, I., Ganem, J.-J., Vickridge, I.C., Rigo, S., Battistig, G., Szilagyi, E., Baumvol, I.J., Radtke, C., and Stedile, F.C., Nucl. Instrum. Methods Phys. Res., Sect. B 219–220 (2004) p. 914.Google Scholar
36.Lu, W., Feldman, L.C., Song, Y., Dhar, S., Collins, W.E., Mitchel, W.C., and Williams, J. R., Appl. Phys. Lett. 85 (2004) p. 3495.Google Scholar
37.Fukuda, K., Kato, M., Senzaki, J., Kojima, K., and Suzuki, T., Mater. Sci. Forum 457–460 (2003) p. 1417.Google Scholar
38.Dhar, S., Feldman, L.C., Wang, S., Isaacs-Smith, T., and Williams, J.R., “Interface trap passivation for SiO2/(000–1) 4H-SiC,” J. Appl. Phys. (2004) submitted.Google Scholar
39.Wang, S., Isaacs-Smith, T., Williams, J.R., Dhar, S., and Feldman, L.C., unpublished manuscript.Google Scholar
40.Dhar, S., Song, Y.W., Feldman, L.C., Isaacs-Smith, T., Tin, C.C., Williams, J.R. and Chung, G., Appl. Phys. Lett. 84 (9) (2004) p. 1498.Google Scholar
41.Yano, H., Hirao, T., Kimoto, T., and Matsunami, H., Appl. Phys. Lett. 78 (2001) p. 374.Google Scholar