Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T11:22:44.373Z Has data issue: false hasContentIssue false

Interfacial mechanics of cellulose nanocrystals

Published online by Cambridge University Press:  01 April 2015

Robert Sinko
Affiliation:
Northwestern University, USA; robert.sinko@u.northwestern.edu
Xin Qin
Affiliation:
Northwestern University, USA; xinqin2013@u.northwestern.edu
Sinan Keten
Affiliation:
Northwestern University, USA; s-keten@northwestern.edu
Get access

Abstract

Cellulose nanocrystals (CNCs) are naturally occurring, structural material building blocks, which exhibit great potential for future multifunctional nanocomposites due to their high bioavailability, low cost, and impressive mechanical properties. Recent research on CNCs has focused on isolation techniques, crystal morphology, mechanical property characterization, and development of hierarchical materials, including CNC thin films and CNC-based nanocomposites. These studies have revealed that the unique conformation, structure, and surface chemistry of CNCs contribute directly to their outstanding mechanical performance and anisotropic features. To better facilitate their applications in hierarchical, bioinspired materials and exploit the inherent benefits of these biological building blocks, interfacial interactions and mechanics of CNCs with various materials, including other nanocrystals, polymer matrices, and small-molecule solvents, must be explored. This review highlights recent work focusing on the interfacial mechanics of CNCs. We discuss the current progress that has advanced our understanding of their behavior, and future challenges that must be addressed in order to fully exploit the potential of CNCs in engineered materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fratzl, P., J. R. Soc. Interface 4, 637 (2007).CrossRefGoogle Scholar
Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., Chem. Soc. Rev. 40, 3941 (2011).CrossRefGoogle Scholar
Diddens, I., Murphy, B., Krisch, M., Mueller, M., Macromolecules 41, 9755 (2008).CrossRefGoogle Scholar
Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., Peijs, T., J. Mater. Sci. 45, 1 (2010).CrossRefGoogle Scholar
Iguchi, M., Yamanaka, S., Budhiono, A., J. Mater. Sci. 35, 261 (2000).CrossRefGoogle Scholar
Reising, A.B., Moon, R.J., Youngblood, J.P., J. Sci. Technol. For. Prod. Proc. 2, 32 (2012).Google Scholar
Diaz, J.A., Wu, X., Martini, A., Youngblood, J.P., Moon, R.J., Biomacromolecules 14, 2900 (2013).CrossRefGoogle Scholar
Abbott, A., Bismarck, A., Cellulose 17, 779 (2010).CrossRefGoogle Scholar
Shanmuganathan, K., Capadona, J.R., Rowan, S.J., Weder, C., J. Mater. Chem. 20, 180 (2010).CrossRefGoogle Scholar
Dong, H., Strawhecker, K.E., Snyder, J.F., Orlicki, J.A., Reiner, R.S., Rudie, A.W., Carbohydr. Polym. 87, 2488 (2012).CrossRefGoogle Scholar
Lee, K.-Y., Tammelin, T., Schulfter, K., Kiiskinen, H., Samela, J., Bismarck, A., ACS Appl. Mater. Interfaces 4, 4078 (2012).CrossRefGoogle Scholar
Ohji, T., Jeong, Y.-K., Choa, Y.-H., Niihara, K., J. Am. Ceram. Soc. 81, 1453 (1998).CrossRefGoogle Scholar
Mizuno, C., John, B., Okamoto, M., Macromol. Mater. Eng. 298, 400 (2013).CrossRefGoogle Scholar
Siqueira, G., Bras, J., Dufresne, A., Polymers 2, 728 (2010).CrossRefGoogle Scholar
Roy, D., Semsarilar, M., Guthrie, J.T., Perrier, S., Chem. Soc. Rev. 38, 2046 (2009).CrossRefGoogle Scholar
Siro, I., Plackett, D., Cellulose 17, 459 (2010).CrossRefGoogle Scholar
Habibi, Y., Lucia, L.A., Rojas, O.J., Chem. Rev. 110, 3479 (2010).CrossRefGoogle Scholar
Azizi Samir, M.A.S., Alloin, F., Dufresne, A., Biomacromolecules 6, 612 (2005).CrossRefGoogle Scholar
Eichhorn, S.J., Soft Matter 7, 303 (2011).CrossRefGoogle Scholar
Klemm, D., Heublein, B., Fink, H.P., Bohn, A., Angew. Chem. Int. Ed. 44, 3358 (2005).CrossRefGoogle Scholar
Lee, K.-Y., Buldum, G., Mantalaris, A., Bismarck, A., Macromol. Biosci. 14, 10 (2014).CrossRefGoogle Scholar
Payen, A., Comptes Rendus 7, 1052 (1838).Google Scholar
Jarvis, M., Nature 426, 611 (2003).CrossRefGoogle Scholar
Nishiyama, Y., Johnson, G.P., French, A.D., Forsyth, V.T., Langan, P., Biomacromolecules 9, 3133 (2008).CrossRefGoogle Scholar
Nishiyama, Y., Langan, P., Chanzy, H., J. Am. Chem. Soc. 124, 9074 (2002).CrossRefGoogle Scholar
Gui, Z., Zhu, H., Gillette, E., Han, X., Rubloff, G.W., Hu, L., Lee, S.B., ACS Nano 7, 6037 (2013).CrossRefGoogle Scholar
Jin, K., Qin, Z., Buehler, M.J., J. Mech. Behav. Biomed. Mater. 42, 198 (2015).CrossRefGoogle Scholar
Nogi, M., Iwamoto, S., Nakagaito, A.N., Yano, H., Adv. Mater. 21, 1595 (2009).CrossRefGoogle Scholar
Nogi, M., Yano, H., Adv. Mater. 20, 1849 (2008).CrossRefGoogle Scholar
Okahisa, Y., Yoshida, A., Miyaguchi, S., Yano, H., Compos. Sci. Technol. 69, 1958 (2009).CrossRefGoogle Scholar
Hubbe, M.A., Rojas, O.J., Lucia, L.A., Sain, M., BioResources 3, 929 (2008).CrossRefGoogle Scholar
Zhu, Y., Hu, J., Luo, H., Young, R.J., Deng, L., Zhang, S., Fan, Y., Ye, G., Soft Matter 8, 2509 (2012).CrossRefGoogle Scholar
Capadona, J.R., Shanmuganathan, K., Tyler, D.J., Rowan, S.J., Weder, C., Science 319, 1370 (2008).CrossRefGoogle Scholar
Ishikawa, A., Okano, T., Sugiyama, J., Polymer 38, 463 (1997).CrossRefGoogle Scholar
Lahiji, R.R., Xu, X., Reifenberger, R., Raman, A., Rudie, A., Moon, R.J., Langmuir 26, 4480 (2010).CrossRefGoogle Scholar
Šturcová, A., Davies, G.R., Eichhorn, S.J., Biomacromolecules 6, 1055 (2005).CrossRefGoogle Scholar
Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.-L., Heux, L., Dubreuil, F., Rochas, C., Biomacromolecules 9, 57 (2007).CrossRefGoogle Scholar
Michael, T.P., András, V., John, D., Natalia, F., Bin, M., Ryan, W., Arvind, R., Robert, J.M., Ronald, S., Theodore, H.W., James, B., Meas. Sci. Technol. 22, 024005 (2011).Google Scholar
Miller, A.F., Donald, A.M., Biomacromolecules 4, 510 (2003).CrossRefGoogle Scholar
Ding, S.-Y., Himmel, M.E., J. Agric. Food. Chem. 54, 597 (2006).CrossRefGoogle Scholar
Li, Q., Renneckar, S., Biomacromolecules 12, 650 (2011).CrossRefGoogle Scholar
Mazeau, K., Vergelati, C., Langmuir 18, 1919 (2002).CrossRefGoogle Scholar
Sinko, R., Mishra, S., Ruiz, L., Brandis, N., Keten, S., ACS Macro Lett. 3, 64 (2014).CrossRefGoogle Scholar
Dri, F.L., Hector, L.G., Moon, R.J., Zavattieri, P.D., Cellulose 20, 2703 (2013).CrossRefGoogle Scholar
Jonoobi, M., Harun, J., Mathew, A., Hussein, M., Oksman, K., Cellulose 17, 299 (2010).CrossRefGoogle Scholar
Dagnon, K.L., Shanmuganathan, K., Weder, C., Rowan, S.J., Macromolecules 45, 4707 (2012).CrossRefGoogle Scholar
Sinko, R., Keten, S., Appl. Phys. Lett. 105, 243702 (2014).CrossRefGoogle Scholar
Heiner, A.P., Kuutti, L., Teleman, O., Carbohydr. Res. 306, 205 (1998).CrossRefGoogle Scholar
Dourado, F., Gama, F.M., Chibowski, E., Mota, M., J. Adhes. Sci. Technol. 12, 1081 (1998).CrossRefGoogle Scholar
Lindman, B., Karlstrom, G., Stigsson, L., J. Mol. Liq. 156, 76 (2010).CrossRefGoogle Scholar
Fratzl, P., Burgert, I., Gupta, H.S., Phys. Chem. Chem. Phys. 6, 5575 (2004).CrossRefGoogle Scholar
Li, Q., Renneckar, S., Cellulose 16, 1025 (2009).CrossRefGoogle Scholar
Bergenstråhle, M., Thormann, E., Nordgren, N., Berglund, L.A., Langmuir 25, 4635 (2009).CrossRefGoogle Scholar
Besombes, S., Mazeau, K., Plant Physiol. Biochem. 43, 299 (2005).CrossRefGoogle Scholar
Kong, K., Eichhorn, S.J., J. Macromol. Sci. Phys. B44, 1123 (2005).CrossRefGoogle Scholar
Qian, X., Ding, S.-Y., Nimlos, M.R., Johnson, D.K., Himmel, M.E., Macromolecules 38, 10580 (2005).CrossRefGoogle Scholar
Hsu, D.D., Xia, W., Arturo, S.G., Keten, S., J. Chem. Theory Comput. 10, 2514 (2014).CrossRefGoogle Scholar
Xia, W., Keten, S., Langmuir 29, 12730 (2013).CrossRefGoogle Scholar
Xia, W., Mishra, S., Keten, S., Polymer 54, 5942 (2013).CrossRefGoogle Scholar
Wei, X., Naraghi, M., Espinosa, H.D., ACS Nano 6, 2333 (2012).CrossRefGoogle Scholar
Zauscher, S., Klingenberg, D.J., Colloids Surf. A 178, 213 (2001).CrossRefGoogle Scholar
Stiernstedt, J., Nordgren, N., Wågberg, L., Brumer III, H., Gray, D.G., Rutland, M.W., J. Colloid Interface Sci. 303, 117 (2006).CrossRefGoogle Scholar
Wu, X., Moon, R., Martini, A., Tribol. Lett. 52, 395 (2013).CrossRefGoogle Scholar
Haghpanah, J.S., Tu, R., Da Silva, S., Yan, D., Mueller, S., Weder, C., Foster, E.J., Sacui, I., Gilman, J.W., Montclare, J.K., Biomacromolecules 14, 4360 (2013).CrossRefGoogle Scholar
Kulasinski, K., Keten, S., Churakov, S.V., Guyer, R., Carmeliet, J., Derome, D., ACS Macro Lett. 3, 1037 (2014).CrossRefGoogle Scholar
Favier, V., Chanzy, H., Cavaille, J.Y., Macromolecules 28, 6365 (1995).CrossRefGoogle Scholar
Okada, O., Oka, K., Kuwajima, S., Toyoda, S., Tanabe, K., Comput. Theor. Polym. Sci. 10, 371 (2000).CrossRefGoogle Scholar
Dandekar, C.R., Shin, Y.C., Composites Part A Appl. Sci. Manuf. 42, 355 (2011).CrossRefGoogle Scholar
Rissanou, A., Harmandaris, V., J. Nanopart. Res. 15, 1 (2013).CrossRefGoogle Scholar
Dufresne, A., J. Nanosci. Nanotechnol. 6, 322 (2006).CrossRefGoogle Scholar
Gu, J., Catchmark, J., J. Biol. Eng. 7, 31 (2013).CrossRefGoogle Scholar
Zimmermann, T., Bordeanu, N., Strub, E., Carbohydr. Polym. 79, 1086 (2010).CrossRefGoogle Scholar
Habibi, Y., Dufresne, A., Biomacromolecules 9, 1974 (2008).CrossRefGoogle Scholar
Anglès, M.N., Dufresne, A., Macromolecules 34, 2921 (2001).CrossRefGoogle Scholar
Banerjee, M., Sain, S., Mukhopadhyay, A., Sengupta, S., Kar, T., Ray, D., J. Appl. Polym. Sci. 131, 39808 (2014).CrossRefGoogle Scholar
Noishiki, Y., Nishiyama, Y., Wada, M., Kuga, S., Magoshi, J., J. Appl. Polym. Sci. 86, 3425 (2002).CrossRefGoogle Scholar
Rusli, R., Eichhorn, S.J., Appl. Phys. Lett. 93, 033111 (2008).CrossRefGoogle Scholar
Chauve, G., Heux, L., Arouini, R., Mazeau, K., Biomacromolecules 6, 2025 (2005).CrossRefGoogle Scholar
Bendahou, A., Kaddami, H., Dufresne, A., Eur. Polym. J. 46, 609 (2010).CrossRefGoogle Scholar
Xu, X., Liu, F., Jiang, L., Zhu, J.Y., Haagenson, D., Wiesenborn, D.P., ACS Appl. Mater. Interfaces 5, 2999 (2013).CrossRefGoogle Scholar
Bergenstrahle, M., Mazeau, K., Berglund, L.A., Eur. Polym. J. 44, 3662 (2008).CrossRefGoogle Scholar
de Mesquita, J.P., Donnici, C.L., Teixeira, I.F., Pereira, F.V., Carbohydr. Polym. 90, 210 (2012).CrossRefGoogle Scholar
Capadona, J.R., Shanmuganathan, K., Trittschuh, S., Seidel, S., Rowan, S.J., Weder, C., Biomacromolecules 10, 712 (2009).CrossRefGoogle Scholar
Capadona, J.R., Van Den Berg, O., Capadona, L.A., Schroeter, M., Rowan, S.J., Tyler, D.J., Weder, C., Nat. Nanotechnol. 2, 765 (2007).CrossRefGoogle Scholar
Alemdar, A., Sain, M., Bioresour. Technol. 99, 1664 (2008).CrossRefGoogle Scholar
Suryanegara, L., Nakagaito, A.N., Yano, H., Compos. Sci. Technol. 69, 1187 (2009).CrossRefGoogle Scholar
Cheng, Q., Wang, S., Rials, T.G., Composites Part A Appl. Sci. Manuf. 40, 218 (2009).CrossRefGoogle Scholar
Seydibeyoglu, M.O., Oksman, K., Compos. Sci. Technol. 68, 908 (2008).CrossRefGoogle Scholar
Samir, M., Alloin, F., Paillet, M., Dufresne, A., Macromolecules 37, 4313 (2004).CrossRefGoogle Scholar
Johnson, R.K., Zink-Sharp, A., Renneckar, S.H., Glasser, W.G., Cellulose 16, 227 (2009).CrossRefGoogle Scholar
Cao, X., Dong, H., Li, C.M., Biomacromolecules 8, 899 (2007).CrossRefGoogle Scholar
Siqueira, G., Bras, J., Dufresne, A., Biomacromolecules 10, 425 (2009).CrossRefGoogle Scholar