Published online by Cambridge University Press: 01 April 2015
This article presents an overview of various material models used to represent the mechanical behavior of arteries and the inverse problems posed by the identification of their constitutive parameters. After briefly defining inverse problems and describing the general features of arteries, this article addresses three main queries involving inverse problems and arterial wall characterization: (1) macroscopic identification of the parameters of sophisticated constitutive models from traditional uniaxial and biaxial experiments; (2) mesoscopic identification of regional variations in the material parameters of arteries, tracking the effects of functional adaptation or lesions; and (3) how constitutive models and inverse problems allow information to be obtained on the arterial microstructure and how the structural constituents interact in the mechanical response. Finally, the article shows that while significant effort has been made to relate the complex mechanical behavior of arteries to their microstructure, a new class of inverse problems has recently appeared related to the identification of mechanobiological parameters, which are involved in the numerical models of growth and remodeling.