Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T12:54:47.307Z Has data issue: false hasContentIssue false

Investigating the Function of Ion Channels in Tethered Lipid Membranes by Impedance Spectroscopy

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The function of biologically important ion channels can be measured in supported lipid membranes by impedance spectroscopy. This approach offers substantial advantages over traditional electrophysiological measurements. In this article, we present an overview of the field, with a special emphasis on the reconstitution of ion channels in lipid bilayers tethered to gold electrodes and the modulation of their channel activity by specific ligand binding.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ashcroft, F.M., Ion Channels and Disease (Academic Press, San Diego, 1999).Google Scholar
2.Montal, M. and Mueller, P., Proc. Natl. Acad. Sci. USA 69 (1972) p. 3561.Google Scholar
3.Neher, E. and Sakmann, B., Nature 260 (1976) p. 799.Google Scholar
4.Sakmann, B. and Neher, E., Single-Channel Recording, 2nd ed. (Plenum Press, New York, 1995).Google Scholar
5.Smith, C., Nature 428 (2004) p. 225.CrossRefGoogle Scholar
6.Burke, M.D. and Schreiber, S.L., Angew. Chem. Int. Ed. Engl. 43 (2004) p. 46.CrossRefGoogle Scholar
7.Sundberg, S.A., Curr. Opin. Biotechnol. 11 (2000) p. 47.CrossRefGoogle Scholar
8.Niemeyer, C.M., Nanobiotechnology Concepts, Applications and Perspectives (Wiley-VCH, Weinheim, 2004).Google Scholar
9.Whitesides, G.M., Nat. Biotechnol. 21 (2003) p. 1161.Google Scholar
10.Bayley, H. and Cremer, P.S., Nature 413 (2001) p. 226.CrossRefGoogle Scholar
11.Schmidt, C., Mayer, M., and Vogel, H., Angew. Chem. Int. Ed. Engl. 39 (2000) p. 3137.Google Scholar
12.Fertig, N., Tilke, A., Blick, R.H., Behrends, J.C., Bruggengate, G., and Kotthaus, J.P., Appl. Phys. Lett. 77 (2000) p. 1218.CrossRefGoogle Scholar
13.Klemic, K.G., Klemic, J.F., Reed, M.A., and Sigworth, F.J., Biosens. Bioelectron. 17 (2002) p. 597.CrossRefGoogle Scholar
14.Mayer, M., Kriebel, J.K., Tosteson, M.T., and Whitesides, G.M., Biophys. J. 85 (2003) p. 2684.CrossRefGoogle Scholar
15.Mayer, M., Terrettaz, S., Giovangrandi, L., Stora, T., and Vogel, H., in Biosensors, 2nd ed., A Practical Approach Series, Vol. 268, edited by Cooper, J.M. and Cass, A.E.G. (Oxford University Press, Oxford, 2003) p. 153.Google Scholar
16.Terrettaz, S., Vogel, H., and Grätzel, M., J. Electroanal. Chem. 326 (1992) p. 161.CrossRefGoogle Scholar
17.Terrettaz, S., Stora, T., Duschl, C., and Vogel, H., Langmuir 9 (1993) p. 1361.CrossRefGoogle Scholar
18.Heyse, S., Vogel, H., Sanger, M., and Siegrist, H., Protein Sci. 4 (1995) p. 2532.Google Scholar
19.Plant, A.L., Langmuir 15 (1999) p. 5128 and references therein.CrossRefGoogle Scholar
20.Papo, N. and Shai, Y., Biochemistry 43 (2004) p. 21.CrossRefGoogle Scholar
21.Lang, H., Duschl, C., and Vogel, H., Langmuir 10 (1994) p. 197.CrossRefGoogle Scholar
22.Heyse, S., Stora, T., Schmid, E., Lakey, J.H., and Vogel, H., Biochim. Biophys. Acta 1376 (1998) p. 319 and references therein.CrossRefGoogle Scholar
23.Bieri, C., Ernst, O.P., Heyse, S., Hofmann, K.P., and Vogel, H., Nat. Biotechnol. 17 (1999) p. 1105.Google Scholar
24.Knoll, W., Frank, C.W., Heibel, C., Naumann, R., Offenhäusser, A., Rühe, J., Schmidt, E. K., Shen, W.W., and Sinner, A., Rev. Mol. Biotechnol. 74 (2000) p. 137 and references therein.CrossRefGoogle Scholar
25.Cheng, Y., Ogier, S.D., Bushby, R.J., and Evans, S.D., Rev. Mol. Biotechnol. 74 (2000) p. 159 and references therein.Google Scholar
26.Stora, T., Lakey, J.H., and Vogel, H., Angew. Chem. Int. Ed. Engl. 38 (1999) p. 389.3.0.CO;2-U>CrossRefGoogle Scholar
27.Terrettaz, S., Ulrich, W.-P., Guerrini, R., Verdini, A., and Vogel, H., Angew. Chem. Int. Ed. 40 (2001) p. 1740.3.0.CO;2-5>CrossRefGoogle Scholar
28.Cornell, B.A., Braach-Maksvytis, V.L.B., King, L.J., Osman, P.D.J., Raguse, B., Wieczorek, L., and Pace, R.J., Nature 387 (1997) p. 580.CrossRefGoogle Scholar
29.Steinem, C., Janshoff, A., Von dem Bruch, K., Reihs, K., Goossens, J., and Galla, H.-J., Bioelectrochemistry and Bioenergetics 45 (1998) p. 17.Google Scholar
30.Naumann, R., Baumgart, T., Gräber, P., Jonczyk, A., Offenhäusser, A., and Knoll, W., Biosens. Bioelectron. 17 (2002) p. 25.CrossRefGoogle Scholar
31.Terrettaz, S., Ulrich, W.-P., Vogel, H., Hong, Q., Dover, L.G., and Lakey, J.H., Protein Sci. 11 (2002) p. 1917.CrossRefGoogle Scholar
32.Macdonald, J.R., ed., Impedance Spectroscopy (Wiley, New York, 1987).Google Scholar
33.Miller, L.H., Howard, R.J., Carter, R., Good, M.F., Nussenzweig, V., and Nussenzweig, R., Science 234 (1986) p. 1349.CrossRefGoogle Scholar
34.Dempsey, C.E., Biochim. Biophys. Acta 1031 (1990) p. 143.CrossRefGoogle Scholar
35.Pawlak, M., Meseth, U., Dhanapal, B., Mutter, M., and Vogel, H., Protein Sci. 3 (1994) p. 1788.CrossRefGoogle Scholar
36.Schiller, S.M., Naumann, R., Lovejoy, K., Kunz, H., and Knoll, W., Angew. Chem. Int. Ed. 42 (2003) p. 208.Google Scholar
37.Terrettaz, S., Mayer, M., and Vogel, H., Langmuir 19 (2003) p. 5567.CrossRefGoogle Scholar