Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T22:28:55.089Z Has data issue: false hasContentIssue false

Is silicene the next graphene?

Published online by Cambridge University Press:  09 April 2014

L.C. Lew Yan Voon
Affiliation:
School of Science and Mathematics, The Citadel; llewyanv@citadel.edu
G.G. Guzmán-Verri
Affiliation:
Materials Science Division, Argonne National Laboratory; gguzman-verri@anl.gov
Get access

Abstract

This article reviews silicene, a relatively new allotrope of silicon, which can also be viewed as the silicon version of graphene. Graphene is a two-dimensional material with unique electronic properties qualitatively different from those of standard semiconductors such as silicon. While many other two-dimensional materials are now being studied, our focus here is solely on silicene. We first discuss its synthesis and the challenges presented. Next, a survey of some of its physical properties is provided. Silicene shares many of the fascinating properties of graphene, such as the so-called Dirac electronic dispersion. The slightly different structure, however, leads to a few major differences compared to graphene, such as the ability to open a bandgap in the presence of an electric field or on a substrate, a key property for digital electronics applications. We conclude with a brief survey of some of the potential applications of silicene.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).Google Scholar
Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L., Solid State Commun. 146, 351 (2008).Google Scholar
Takeda, K., Shiraishi, K., Phys. Rev. B 50, 14916 (1994).Google Scholar
Nakano, H., Ishii, M., Nakamura, H., Chem. Commun. 23, 2945 (2005).Google Scholar
Nakano, H., Mitsuoka, T., Harada, M., Horibuchi, K., Nozaki, H., Takahashi, N., Nonaka, T., Seno, Y., Nakamura, H., Angew. Chem. 118, 6451 (2006).Google Scholar
Guzmán-Verri, G.G., Yan Voon, L.C. Lew, Phys. Rev. B 76, 075131 (2007).Google Scholar
Kara, A., Léandri, C., Dávila, M.E., de Padova, P., Ealet, B., Oughaddou, H., Aufray, B., Le Lay, G., J. Supercond. Novel Magn. 22, 259 (2009).Google Scholar
Okamoto, H., Kumai, Y., Sugiyama, Y., Mitsuoka, T., Nakanishi, K., Ohta, T., Nozaki, H., Yamaguchi, S., Shirai, S., Nakano, H., J. Am. Chem. Soc. 132, 2710 (2010).Google Scholar
Sugiyama, Y., Okamoto, H., Mitsuoka, T., Morikawa, T., Nakanishi, K., Ohta, T., Nakano, H., J. Am. Chem. Soc. 132, 5946 (2010).Google Scholar
Zhang, C., Yan, S., J. Phys. Chem. C 116, 4163 (2012).Google Scholar
Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G., Phys. Rev. Lett. 108, 155501 (2012).Google Scholar
Lin, C.L., Arafune, R., Kawahara, K., Tsukahara, N., Minamitani, E., Kim, Y., Takagi, N., Kawai, M., Appl. Phys. Express 5, 045802 (2012).Google Scholar
Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., Chen, L., Wu, K., Nano Lett. 12, 3507 (2012).Google Scholar
Chiappe, D., Grazianetti, C., Tallarida, G., Fanciulli, M., Molle, A., Adv. Mater. 24, 5088 (2012).CrossRefGoogle Scholar
Jamgotchian, H., Colignon, Y., Hamzaoui, N., Ealet, B., Hoarau, J.Y., Aufray, B., Bibérian, J.P., J. Phys. Condens. Matter 24, 172001 (2012).Google Scholar
Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., Yamada-Takamura, Y., Phys. Rev. Lett. 108, 245501 (2012).Google Scholar
Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., Zhang, Y., Li, G., Zhou, H., Hofer, W.A., Gao, Hong-Jun, Nano Lett. 13, 685 (2013).Google Scholar
Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., Ciraci, S., Phys. Rev. Lett. 102, 236804 (2009).Google Scholar
Durgun, E., Tongay, S., Ciraci, S., Phys. Rev. B 72, 075420 (2005).CrossRefGoogle Scholar
Kaltsas, D., Tsetseris, L., Phys. Chem. Chem. Phys. 24, 9710 (2013).CrossRefGoogle Scholar
Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., Aufray, B., Appl. Phys. Lett. 97, 223109 (2010).Google Scholar
Enriquez, H., Vizzini, S., Kara, A., Lalmi, B., Oughaddou, H., J. Phys. Condens. Matter 24, 314211 (2012).CrossRefGoogle Scholar
Kaltsas, D., Tsetseris, L., Dimoulas, A., J. Phys. Condens. Matter 24, 442001 (2012).Google Scholar
Gao, J.F., Zhao, J.J., Sci. Rep. 2, 861 (2012).Google Scholar
Arafune, R., Lin, C.L., Kawahara, K., Tsukahara, N., Minamitani, E., Kim, Y., Takagi, N., Kawai, M., Surf. Sci. 608, 297 (2013).Google Scholar
Huang, S., Kang, W., Yang, L., Appl. Phys. Lett. 102, 133106 (2013).Google Scholar
Şahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Aktürk, E., Senger, R.T., Ciraci, S., Phys. Rev. B 80, 155453 (2009).Google Scholar
Wang, S., J. Phys. Soc. Jpn. 79, 064602 (2010).CrossRefGoogle Scholar
Zhao, H., Phys. Lett. A 376, 3546 (2012).Google Scholar
Liu, G., Wu, M.S., Ouyang, C.Y., Xu, B., Europhys. Lett. 99, 17010 (2012).CrossRefGoogle Scholar
Qin, R., Wang, C.H., Zhu, W., Zhang, Y., AIP Adv. 2, 022159 (2012).Google Scholar
Chen, L., Liu, C.C., Feng, B., He, X., Cheng, P., Ding, Z., Meng, S., Yao, Y., Wu, K., Phys. Rev. Lett. 109, 056804 (2012).CrossRefGoogle Scholar
Chen, L., Li, H., Feng, B., Ding, Z., Qiu, J., Cheng, P., Wu, K., Meng, S., Phys. Rev. Lett. 110, 085504 (2013).Google Scholar
Guo, Z., Furuya, S., Iwata, J., Oshiyama, A., Phys. Rev. B 87, 235435 (2013).Google Scholar
Lin, C.L., Arafune, R., Kawahara, K., Kanno, M., Tsukahara, N., Minamitani, E., Kim, Y., Kawai, M., Takagi, N., Phys. Rev. Lett. 110, 076801 (2013).Google Scholar
Wang, Y.-P., Cheng, H.-P., Phys. Rev. B 87, 245430 (2013).Google Scholar
Avila, J., de Padova, P., Cho, S., Colambo, I., Lorcy, S., Quaresima, C., Vogt, P., Resta, A., Le Lay, G., Asensio, M.C., J. Phys. Condens. Matter 25, 262001 (2013).Google Scholar
Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., Gao, Z., Yu, D., Lu, J., Nano Lett. 12, 113 (2012).Google Scholar
Drummond, N.D., Zólyomi, V., Fal’ko, V.I., Phys. Rev. B 85, 075423 (2012).Google Scholar
Liu, C.-C., Feng, W., Yao, Y., Phys. Rev. Lett. 107, 076802 (2011).Google Scholar
Ezawa, M., Eur. J. Phys. B 85, 1 (2012).Google Scholar
Ezawa, M., New. J. Phys. 14, 033003 (2012).CrossRefGoogle Scholar
Dyrdal, A., Barnaś, J., Phys. Status Solidi RRL 6, 340 (2012).Google Scholar
Ezawa, M., Phys. Rev. Lett. 109, 055502 (2012).Google Scholar
Ezawa, M., Phys. Rev. B 87, 155415 (2013).Google Scholar
Tabert, C.J., Nicol, E.J., Phys. Rev. Lett. 110, 197402 (2013).Google Scholar
Lu, A.J., Yang, X.B., Zhang, R.Q., Solid State Commun. 149, 153 (2009).CrossRefGoogle Scholar
Pulci, O., Gori, P., Marsili, M., Garbuio, V., Del Sole, R., Bechstedt, F., Europhys. Lett. 98, 37004 (2012).Google Scholar
Bechstedt, F., Matthes, L., Gori, P., Pulci, O., Appl. Phys. Lett. 100, 261906 (2012).CrossRefGoogle Scholar
Wei, W., Dai, Y., Huang, B., Jacob, T., Phys. Chem. Chem. Phys. 15, 8789 (2013).Google Scholar
Lew Yan Voon, L.C., Sandberg, E., Aga, R.S., Farajian, A.A., Appl. Phys. Lett. 97, 163114 (2010).Google Scholar
Garcia, J.C., de Lima, D.B., Assali, L.V.C., Justo, J.F., J. Phys. Chem. C 115, 13242 (2011).Google Scholar
Houssa, M., Scalise, E., Sankaran, K., Pourtois, G., Afanas’ev, V.V., Stesmans, A., Appl. Phys. Lett. 98, 223107 (2011).Google Scholar
Jose, D., Datta, A., Phys. Chem. Chem. Phys. 13, 7304 (2011).Google Scholar
Ding, Y., Ni, J., Appl. Phys. Lett. 100, 083102 (2012).Google Scholar
Wang, X.-Q., Li, H.-D., Wang, J.-T., Phys. Chem. Chem. Phys. 14, 3031 (2012).Google Scholar
Zhang, P., Li, X.D., Hu, C.H., Wu, S.Q., Zu, Z.Z., Phys. Lett. A 376, 1230 (2012).Google Scholar
Gang, C., Liu, P.-F., Li, Z.-T., Chin. Phys. B 22, 046201 (2013).Google Scholar
Zheng, F.B. Zhang, C.W., Nano. Res. Lett. 7, 422 (2012).Google Scholar
Lin, X., Ni, J., Phys. Rev. B 86, 075440 (2012).Google Scholar
Li, H., Zhang, R., Europhys. Lett. 99, 36001 (2012).Google Scholar
Hu, M., Zhang, X., Poulikakos, D., Phys. Rev. B 87, 195417 (2013).Google Scholar
Tchalala, M.R., Enriquez, H., Mayne, A.J., Kara, A., Roth, S., Silly, M.G., Bendounan, A., Sirotti, F., Greber, T., Aufray, B., Dujardin, G., Ali, M.A., Oughaddou, H., Appl. Phys. Lett. 102, 083107 (2013).Google Scholar
de Padova, P., Quaresima, C., Olivieri, B., Perfetti, P., Le Lay, G., J. Phys. D 44, 312001 (2011).Google Scholar
Ding, Y., Ni, J., Appl. Phys. Lett. 95, 083115 (2009).Google Scholar
Kang, J., Wu, F., Li, J., Appl. Phys. Lett. 100, 233122 (2012).Google Scholar
Kim, W.Y., Kim, K.S., Nat. Nanotechnol. 3, 408 (2008).Google Scholar
Houssa, M., Pourtois, G., Afanas’ev, V.V., Stesmans, A., Appl. Phys. Lett. 97, 112106 (2010).CrossRefGoogle Scholar
Liu, H., Gao, J., Zhao, J., J. Phys. Chem. C 117, 10353 (2013).Google Scholar
Li, H., Wang, L., Liu, Q., Zheng, J., Mei, W.N., Gao, Z., Shi, J., Lu, J., Eur. Phys. J. B 85, 1 (2012).Google Scholar
Tahir, M., Schwingenschlogl, U., Sci. Rep. 3, 1 (2013).Google Scholar
Wang, Y., Zheng, J., Ni, Z., Fei, R., Liu, Q., Quhe, R., Xu, C., Zhou, J., Gao, Z., Lu, J., Nano 7, 1250037 (2012).Google Scholar
Tsai, W.-F., Huang, C.-Y., Chang, T.-R., Lin, H., Jeng, H.-T., Bansil, A., Nat. Commun. 4, 1500 (2013).Google Scholar
Tritsaris, G.A., Kaxiras, E., Meng, S., Wang, E., Nano Lett. 13, 2258 (2013).Google Scholar
Osborn, T.H., Farajian, A.A., J. Phys. Chem. C 116, 22916 (2012).Google Scholar