Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T00:24:36.901Z Has data issue: false hasContentIssue false

Lithium-sulfur batteries

Published online by Cambridge University Press:  09 May 2014

Linda F. Nazar
Affiliation:
University of Waterloo, Ontario, Canada; lfnazar@uwaterloo.ca
Marine Cuisinier
Affiliation:
University of Waterloo, Ontario, Canada
Quan Pang
Affiliation:
University of Waterloo, Ontario, Canada
Get access

Abstract

Markets for energy storage that go beyond portable electronics have emerged rapidly this decade, including powering electric vehicles and “leveling the grid” fed by renewable sources such as solar energy, which are intermittent in supply. These new demands require a significant step-up in energy density that will probably not be met by Li-ion batteries; estimates suggest they are starting to approach their theoretical limits. But in the world of “beyond Li-ion,” the options are limited. One of the most hopeful is the Li-S battery, for which greater energy storage can potentially be realized through phase-transformation chemistry using elemental sulfur as a positive electrode material, which converts to lithium sulfide. These future generation systems offer up to a five-fold increased specific energy and greatly reduced cost factors, but commercialization has been hindered owing to key challenges. Efforts over the last two years to better manipulate the cell chemistry and overcome these challenges are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yang, Z., Zhang, J., Kintner-Meyer, M.C., Lu, X., Choi, D., Lemmon, J.P., Liu, J., Chem. Rev. 111, 3577 (2011).Google Scholar
Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.M., Nat. Mater. 11, 19 (2012).Google Scholar
Goodenough, J.B., Park, K.-S., J. Am. Chem. Soc. 135, 1167 (2013).CrossRefGoogle Scholar
Yamin, H., Peled, E., J. Power Sources 9, 281 (1983).Google Scholar
Rauh, R.D., Abraham, K.M., Pearson, G.F., Surpenant, J.K., Brummer, S.B., J. Electrochem. Soc. 126, 523 (1979).CrossRefGoogle Scholar
Ji, X., Nazar, L.F., J. Mater. Chem. 20, 9821 (2010).CrossRefGoogle Scholar
Evers, S., Nazar, L.F., Acc. Chem. Res. 46, 1135 (2013).CrossRefGoogle Scholar
Manthiram, A., Fu, Y., Su, Y.-S., Acc. Chem. Res. 46, 1125 (2013).Google Scholar
Yin, Y.X., Xin, S., Guo, Y.G., Wan, L.J., Angew. Chem. Int. Ed. 52, 13186 (2013).CrossRefGoogle Scholar
Yang, Y., Zheng, G., Cui, Y., Chem. Soc. Rev. 42, 3018 (2013).Google Scholar
Wang, D.-W., Zeng, Q., Zhou, G., Yin, L., Li, F., Cheng, H.-M., Gentle, I.R., Lu, G.Q.M., J. Mater. Chem. A 1, 9382 (2013).Google Scholar
Hagen, M., Dörfler, S., Fanz, P., Berger, T., Speck, R., Tübke, J., Althues, H., Hoffmann, M.J., Scherr, C., Kaskel, S., J. Power Sources 224, 260 (2013).CrossRefGoogle Scholar
Yang, Y., Zheng, G., Cui, Y., Energy Environ. Sci. 6, 1552 (2013).Google Scholar
Herbert, D., Ulam, D.J., US Patent 3043896 (1962).Google Scholar
Rao, M.L.B., US Patent 3,413,154 (1968).Google Scholar
Nole, D., Moss, V., US Patent 3532543 (1970).Google Scholar
Akridge, J.R., Mikhaylik, Y.V., White, N., Solid State Ionics 175, 243 (2004).Google Scholar
Rauh, R.D., Shuker, F.S., Marston, J.M., Brummer, S.B., J. Inorg. Nucl. Chem. 39, 1761 (1977).Google Scholar
Ryu, H.S., Ahn, H.J., Kim, K.W., Ahn, J.H., Lee, J.Y., Cairns, E.J., J. Power Sources 140, 365 (2005).Google Scholar
Rao, B.M.L., Shropshire, J.A., J. Electrochem. Soc. 128, 942 (1981).CrossRefGoogle Scholar
Nelson, J., Misra, S., Yang, Y., Jackson, A., Liu, Y., Wang, H., Dai, H., Andrews, H., Cui, Y., Toney, M.F., J. Am. Chem. Soc. 134, 6337 (2012).CrossRefGoogle Scholar
Diao, Y., Xie, K., Xiong, S., Hong, X.J., J. Electrochem. Soc. 159, A421 (2012).Google Scholar
Barchasz, C., Lepêtre, J.-C., Alloin, F., Patoux, S., J. Power Sources 199, 322 (2011).Google Scholar
Cheon, S.E., Ko, K.S., Cho, J.H., Kim, S.W., Chin, E.Y., Kim, H.T., J. Electrochem. Soc. 150, A796 (2003).CrossRefGoogle Scholar
Demir-Cakan, R., Morcrette, M., Gangulibabu, A.G., Dedryvère, R., Tarascon, J.-M., Energy Environ. Sci. 6, 176 (2013).Google Scholar
Fu, Y., Su, Y.S., Manthiram, A., Angew. Chem. Int. Ed. 52, 6930 (2013).Google Scholar
Abraham, K.M., Brummer, S.B., in Lithium Batteries, Gabano, J.P., Ed. (Academic Press, London, 1983), chap. 14.Google Scholar
Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., Chen, X., Shao, Y., Engelhard, M.H., Nie, Z., Xiao, J., Li, X., Sushko, P.V., Liu, J., Zhang, J.-G., J. Am. Chem. Soc. 135, 4450 (2013).CrossRefGoogle Scholar
Visco, S.J., Chu, M.Y., US Patent 6,210,832 (2001).Google Scholar
Zhang, T., Imanishi, N., Shimonishi, Y., Hirano, A., Xie, J., Takeda, Y., Yamamoto, O., Sammes, N., J. Electrochem. Soc. 157, A214 (2010).Google Scholar
Murugan, R., Thangadurai, V., Weppner, W., Angew. Chem. Int. Ed. 46, 7778 (2007).Google Scholar
Knauth, P., Solid State Ionics 180, 911 (2009).CrossRefGoogle Scholar
Ohta, S., Kobayashi, T., Asaoka, T., J. Power Sources 196, 3342 (2011).Google Scholar
Shinawi, E., Janek, J., J. Power Sources 225, 13 (2013).CrossRefGoogle Scholar
Mikhaylik, Y.V., US Patent 7,352,680 (2008).Google Scholar
Aurbach, D., Pollak, E., Elazari, R., Salitra, G., Kelley, C.S., Affinito, J., J. Electrochem. Soc. 156, A694 (2009).Google Scholar
Hassoun, J., Scrosati, B., Angew. Chem. Int. Ed. 49, 2371 (2010).Google Scholar
Yang, Y., McDowell, M.T., Jackson, A., Cha, J.J., Hong, S.S., Cui, Y., Nano Lett. 10, 1486 (2010).CrossRefGoogle Scholar
Elazari, R., Salitra, G., Gershinsky, G., Garsuch, A., Panchenko, A., Aurbach, D., Electrochem. Commun. 14, 21 (2012).Google Scholar
Brückner, J., Thieme, S., Böttger-Hiller, F., Bauer, I., Grossmann, H.T., Strubel, P., Althues, H., Spange, S., Kaskel, S., Adv. Funct. Mater. 24 (9), 1284 (2013).Google Scholar
He, X., Ren, J., Wang, L., Pu, W., Jiang, C., Wan, C., J. Power Sources 190, 154 (2009).CrossRefGoogle Scholar
Elazari, R., Salitra, G., Talyosed, Y., Grinblat, J., Scordilis-Kelley, C., Xiao, A., Affinito, J., Aurbach, D., J. Electrochem. Soc. 157, A1131 (2010).CrossRefGoogle Scholar
Ji, X., Lee, K. T., Nazar, L.F., Nat. Mater. 8, 500 (2009).Google Scholar
Ji, L., Rao, M., Zheng, H., Zhang, L., Li, Y., Duan, W., Guo, J., Cairns, E.J., Zhang, Y., J. Am. Chem. Soc. 133, 18522 (2011).Google Scholar
Lu, S., Cheng, Y., Wu, X., Liu, J., Nano Lett. 13, 2485 (2013).CrossRefGoogle Scholar
Chen, R.J., Zhao, T., Lu, J., Wu, F., Li, L., Chen, J.Z., Tan, G.Q., Ye, Y.S., Amine, K., Nano Lett. 13, 4642 (2013).CrossRefGoogle Scholar
Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., Cui, Y., Dai, H., Nano Lett. 11, 2644 (2011).CrossRefGoogle Scholar
Zheng, G., Zhang, Q., Cha, J.J., Yang, Y., Li, W., Seh, Z.W., Cui, Y., Nano Lett. 13, 1265 (2013).Google Scholar
Song, M.K., Zhang, Y., Cairns, E.J., Nano Lett. 13, 5891 (2013).Google Scholar
Jayaprakash, N., Shen, J., Moganty, S.S., Corona, A., Archer, L.A., Angew. Chem. Int. Ed. 123, 6026 (2011).Google Scholar
Kim, J., Lee, D.J., Jung, H.-G., Sun, Y.-K., Hassoun, J., Scrosati, B., Adv. Funct. Mater. 23, 1076 (2013).Google Scholar
Guo, J., Xu, Y., Wang, C., Nano Lett. 11, 4288 (2011).Google Scholar
Zheng, G., Yang, Y., Chan, J.J., Hong, S.S., Cui, Y., Nano Lett. 11, 4462 (2011).Google Scholar
Cuisinier, M., Cabelguen, P.-E., Evers, S., He, G., Kolbeck, M., Garsuch, A., Bolin, T., Balasubramanian, M., Nazar, L.F., J. Phys. Chem. Lett. 4, 3227 (2013).CrossRefGoogle Scholar
He, G., Evers, S., Liang, X., Cuisinier, M., Garsuch, A., Nazar, L.F., ACS Nano 7, 10920 (2013).Google Scholar
Peled, E., Gorenshtein, A., Segal, M., Sternberg, Y., J. Power Sources 26, 269 (1989).Google Scholar
Kim, H.S., Jeong, C.-S., Bull. Korean Chem. Soc., 32, 3682 (2011).Google Scholar
Yuan, L.X., Feng, J.K., Ai, X.P., Cao, Y.L., Chen, S.L., Yang, H.X., Electrochem. Commun. 8, 610 (2006).Google Scholar
Tamura, T., Hachida, T., Yoshida, K., Tachikawa, N., Dokko, K., Watanabe, M., J. Power Sources 195, 6095 (2010).CrossRefGoogle Scholar
Park, J.-W., Yamauchi, K., Takashima, E., Tachikawa, N., Ueno, K., Dokko, K., Watanabe, M., J. Phys. Chem. C 117, 4431 (2013).Google Scholar
Suo, L., Hu, Y.S., Li, H., Armand, M., Chen, L., Nat. Commun. 4, 1481 (2013).Google Scholar
Weng, W., Pol, V.G., Amine, K., Adv. Mater. 25, 1608 (2013).CrossRefGoogle Scholar
Sakuda, A., Hayashi, A., Tatsumisago, M., Sci. Rep. 3, 2261 (2013).Google Scholar
Agostini, M., Aihara, Y., Yamada, T., Scrosati, B., Hassoun, J., Solid State Ionics 244, 48 (2013).Google Scholar
Lin, Z., Liu, Z.C., Dudney, N.J., Liang, C.D., ACS Nano 7, 2829 (2013).Google Scholar
Nagao, M., Hayashi, A., Tatsumisago, M., Electrochim. Acta 56, 6055 (2011).CrossRefGoogle Scholar
Machida, N., Kobayashi, K., Nishikawa, Y., Shigematsu, T., Solid State Ionics 175, 247 (2004).Google Scholar
Kobayashi, T., Imade, Y., Shishihara, D., Homma, K., Nagao, M., Watanabe, R., Yokoi, T., Yamada, A., Kanno, R., Tatsumi, T., J. Power Sources 182, 621 (2008).Google Scholar
Sahu, G., Lin, Z., Li, J., Liu, Z., Dudney, N., Liang, C., Energy Environ. Sci. 7, 1053 (2014).Google Scholar
Takeuchia, T., Kageyama, H., Nakanishi, K., Ohta, T., Sakuda, A., Sakaebe, H., Kobayashi, H., Tatsumi, K., Ogumi, Z., Electrochem. Lett. 3, A31 (2014).CrossRefGoogle Scholar
Barchasz, C., Molton, F., Duboc, C., Leprêtre, J.C., Patoux, S., Alloin, F., Anal. Chem. 84, 3973 (2012).CrossRefGoogle Scholar
Patel, M.U.M., Demir-Cakan, R., Morcrette, M., Tarascon, J.-M., Gaberscek, M., Dominko, R., ChemSusChem 6 (7), 1177 (2013).Google Scholar
Walus, S., Barchasz, C., Colin, J.F., Martin, J.F., Elkaim, E., Lepretre, J.C., Alloin, F., Chem. Commun. 49, 7899 (2013).CrossRefGoogle Scholar
Villevieille, C., Novak, P., J. Mater. Chem. A 1, 13089 (2013).Google Scholar
Yuan, L., Qiu, X., Chen, L., Zhu, W., J. Power Sources 189, 127 (2009).CrossRefGoogle Scholar
Gao, J., Lowe, M.A., Kiya, Y., Abruña, H.D., J. Phys. Chem. C 115, 25132 (2011).Google Scholar